Nonsyndromic cleft palate only (nsCPO) is a facial malformation that has a livebirth prevalence of 1 in 2,500. Research suggests that the etiology of nsCPO is multifactorial, with a clear genetic component. To date, genome-wide association studies have identified only 1 conclusive common variant for nsCPO, that is, a missense variant in the gene grainyhead-like-3 ( GRHL3). Thus, the underlying genetic causes of nsCPO remain largely unknown. The present study aimed at identifying rare variants that might contribute to nsCPO risk, via whole-exome sequencing (WES), in multiply affected Central European nsCPO pedigrees. WES was performed in 2 affected first-degree relatives from each family. Variants shared between both individuals were analyzed for their potential deleterious nature and a low frequency in the general population. Genes carrying promising variants were annotated for 1) reported associations with facial development, 2) multiple occurrence of variants, and 3) expression in mouse embryonic palatal shelves. This strategy resulted in the identification of a set of 26 candidate genes that were resequenced in 132 independent nsCPO cases and 623 independent controls of 2 different ethnicities, using molecular inversion probes. No rare loss-of-function mutation was identified in either WES or resequencing step. However, we identified 2 or more missense variants predicted to be deleterious in each of 3 genes ( ACACB, PTPRS, MIB1) in individuals from independent families. In addition, the analyses identified a novel variant in GRHL3 in 1 patient and a variant in CREBBP in 2 siblings. Both genes underlie different syndromic forms of CPO. A plausible hypothesis is that the apparently nonsyndromic clefts in these 3 patients might represent hypomorphic forms of the respective syndromes. In summary, the present study identified rare variants that might contribute to nsCPO risk and suggests candidate genes for further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0022034517722761DOI Listing

Publication Analysis

Top Keywords

candidate genes
12
nonsyndromic cleft
8
cleft palate
8
nscpo
8
rare variants
8
variants contribute
8
contribute nscpo
8
nscpo risk
8
variants
6
identified
5

Similar Publications

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure.

View Article and Find Full Text PDF

Thermal Adaptation in Worldwide Collections of a Major Fungal Pathogen.

Mol Plant Microbe Interact

January 2025

ETH Zurich Department of Environmental Systems Science, Plant Pathology Group, Institute of Integrative Biology, Zurich, Zürich, Switzerland.

Adaptation to new climates poses a significant challenge for plant pathogens during range expansion, highlighting the importance of understanding their response to climate to accurately forecast future disease outbreaks. The wheat pathogen is ubiquitous across most wheat production regions distributed across diverse climate zones. We explored the genetic architecture of thermal adaptation using a global collection of 411 strains that were phenotyped across a wide range of temperatures and then included in a genome-wide association study.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

Background: Over the last decade, the anticancer effects of Stokes (RVS) have been reported in various preclinical or clinical studies. However, the effects of RVS on immuno-oncology, especially on the functional properties of T cells and their phenotypes, remain unclear. Here, we planned to investigate the impact of RVS on immuno-oncology, specifically focusing on its effects on T cells.

View Article and Find Full Text PDF

Natural hybridisation among rare or endangered species and stable congenerics is increasingly topical for the conservation of species-level diversity under anthropogenic impacts. Evidence for beneficial genes being introgressed into or selected for in hybrids raises concurrent questions about its evolutionary significance. In Darwin's tree finches on the island of Floreana (Galapagos Islands, Ecuador), the Critically Endangered medium tree finch () undergoes introgression with the stable small tree finch (), and hybrids regularly backcross with Earlier studies in 2005-2013 documented an increase in the frequency of hybridisation on Floreana using field-based and microsatellite data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!