The nineteenth century was the time of a real revolution in science and medicine. A lot of seminal discoveries in medicine and biology were done in this time, and many of them were coincident with the introduction of the compound microscope by Hermann van Deijl and the standard histological technique by Paul Ehrlich. The main tissue types and individual cells were characterized and originally classified more than hundred years ago, although less attention was paid to their basic functions. This was mainly due to the modality of tissue specimen processing that allowed particularly detailed descriptive studies. Even so, we can notice some attempts to correlate the structure with the function. The German scientist Paul Langerhans, well-known for the discovery of Langerhans islets of the pancreas and Langerhans cells from the epidermis, tried to change the conventional fate of morphological studies introducing in his works functional hypothesis based on traditional microscopic observations even from the beginning of his scientific career. Paul Langerhans was a complex personality of the second half of the nineteenth century, not only in medicine, but also in other fields of biology. In the present review, presented is the life and research activity of Paul Langerhans, not only because of the importance of his discoveries, but also for perspectives that were opened by these findings in unexpected fields of medicine and biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31952/amha.15.1.7 | DOI Listing |
Diabetes Res Clin Pract
January 2025
Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni (MI), Italy.
Primary prevention of diabetes still remains as an unmet challenge in a real world setting. While, translational programmes have been successful in the developed nations, the prevailing social and economic inequities in the low and middle income countries, fail to integrate diabetes prevention into their public health systems. The resulting exponential increase in the prevalence of diabetes and the cost of treatment has put primary prevention in the back seat.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01037 Dresden, Germany.
Endothelial dysfunction is a strong prognostic factor in predicting the development of cardiovascular diseases. Dysfunctional endothelium loses its homeostatic ability to regulate vascular tone and prevent overactivation of inflammation, leading to vascular dysfunction. These functions are critical for vascular homeostasis and arterial pressure control, the disruption of which may lead to hypertension.
View Article and Find Full Text PDFWhile pancreatic beta-cell proliferation has been extensively studied, the role of cell death during islet development remains incompletely understood. Using a genetic model of caspase inhibition in beta cells coupled with mathematical modeling, we here discover an onset of beta-cell death in juvenile zebrafish, which regulates beta-cell mass. Histologically, this beta-cell death is underestimated due to phagocytosis by resident macrophages.
View Article and Find Full Text PDFObjective: Progression of prediabetes to type 2 diabetes has been associated with β-cell dysfunction, whereas its remission to normoglycemia has been related to improvement of insulin sensitivity. To understand the mechanisms and identify potential biomarkers related to prediabetes trajectories, we compared the proteomics and metabolomics profile of people with prediabetes progressing to diabetes or reversing to normoglycemia within 1 year.
Research Design And Methods: The fasting plasma concentrations of 1,389 proteins and the fasting, 30-min, and 120-min post-oral glucose tolerance test (OGTT) plasma concentrations of 152 metabolites were measured in up to 134 individuals with new-onset diabetes, prediabetes, or normal glucose tolerance.
iScience
December 2024
Institute of Clinical Pharmacology, Otto-von-Guericke University, Magdeburg, Germany.
There is an unmet need for a biomarker of liver fat. We identified dimethylguanidino valeric acid (DMGV) as a circulating biomarker of liver fat. Here, we assess its two isoforms-symmetric (SDGV) and asymmetric (ADGV)-as biomarkers of steatosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!