Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity-associated renal injury are recognized to at least involve a lipid-rich and pro-inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide-induced innate immunity response and inflammation. We suggested that obesity-associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild-type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF-κB and MAPKs. This HFD-induced renal injury profile was not observed in KO mice or L6H21-treated mice. Mice given PA mimmicked the HFD-induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA-induced inflammation. MD2 is causally related with obesity-associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity-associated kidney diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706499PMC
http://dx.doi.org/10.1111/jcmm.13287DOI Listing

Publication Analysis

Top Keywords

renal injury
20
obesity-associated renal
12
renal
9
myeloid differentiation
8
differentiation protein
8
kidney diseases
8
md2
8
md2 knockout
8
mice
8
hfd mice
8

Similar Publications

Serum Exosomes miR-122-5P Induces Hepatic and Renal Injury in Septic Rats by Regulating TAK1/SIRT1 Pathway.

Infect Drug Resist

January 2025

Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.

Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.

View Article and Find Full Text PDF

Introduction: Sepsis is an uncontrolled systemic response to infection that leads to life-threatening organ dysfunction. The in-hospital mortality rate remains significantly high in septic shock patients with malignancies. This study investigates whether early and high-volume administration of sodium bicarbonate during continuous renal replacement therapy (CRRT) can reduce 28-day mortality, increase shock reversal rates, and shorten the duration of CRRT, mechanical ventilation, and intensive care unit (ICU) stays.

View Article and Find Full Text PDF

Introduction: Acute kidney injury (AKI) is common in hospitalised adults and children and is associated with significantly increased mortality and worse short-term and long-term outcomes. This systematic review and meta-analysis will evaluate the cost associated with AKI.

Methods And Analysis: This health economic analysis will be performed using systematic search of databases, including MEDLINE, EMBASE, CINAHL, Scopus and Cochrane Library from 2009 to the present (search completed on 27 May 2024).

View Article and Find Full Text PDF

Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper.

View Article and Find Full Text PDF

Effects of Novel Antidiabetic Agents on Contrast-Associated Acute Kidney Injury in Diabetic Patients Undergoing Percutaneous Coronary Intervention.

Am J Cardiol

January 2025

Research Unit of Cardiac Sciences, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Cardiology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.

Contrast-associated acute kidney injury (CA-AKI) remains a serious complication after percutaneous coronary revascularization (PCI), with limited effective preventive strategies especially for diabetic patients. This study aimed to assess the effects of novel antidiabetic agents (NAD), i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!