Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo PtS catalyst. For the preparation of the novel [Mo Pt(PPh )S Cl (dmen) ] (3 ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo S Cl (dmen) ] (1 ) and Pt(PPh ) (2) complexes. The heterobimetallic 3 cation preserves the main structural features of its 1 cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3 catalyst co-exists with its trinuclear 1 precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201702783 | DOI Listing |
Chin Med
January 2025
State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198, China.
Background: Cell membrane chromatography (CMC) is a biochromatography with a dual function of recognition and separation, offering a distinct advantage in screening bioactive compounds from Chinese medicines (CMs). Yindan Xinnaotong soft capsule (YD), a CM formulation, has been widely utilized in the treatment of cardiovascular disease. However, a comprehensive mapping of the myocardial protective active compounds remains elusive.
View Article and Find Full Text PDFVet Res
January 2025
College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, Iksan, 54596, Republic of Korea.
Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity.
View Article and Find Full Text PDFJ Prosthet Dent
January 2025
Professor and Chairman, Department of Prosthodontics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:
Statement Of Problem: Information on predicting the measurements of the nose from selected facial landmarks to assist in maxillofacial prosthodontics is lacking.
Purpose: The objective of this study was to identify the efficiency of machine learning models in predicting the length and width of the nose from selected facial landmarks.
Material And Methods: Two-dimensional frontal and lateral photographs were made of 100 men and 100 women.
Bioresour Technol
January 2025
Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:
Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.
View Article and Find Full Text PDFSci Total Environ
January 2025
Yunnan Key Laboratory of Internal Combustion Engine, Kunming University of Science and Technology, Kunming 650500, China.
Ammonia is a highly promising carbon-neutral fuel. The use of ammonia as a fuel for internal combustion engines can reduce fossil energy consumption and greenhouse gas emissions. However, the high ignition energy required for ammonia and the slow flame propagation rate result in low combustion efficiency when ammonia is used directly in internal combustion engines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!