Selective ion transport is a hallmark of biological ion channel behavior but is a major challenge to engineer into artificial membranes. Here, we demonstrate, with all-atom molecular dynamics simulations, that bare graphene nanopores yield measurable ion selectivity that varies over one to two orders of magnitude simply by changing the pore radius and number of graphene layers. Monolayer graphene does not display dehydration-induced selectivity until the pore radius is small enough to exclude the first hydration layer from inside the pore. Bi- and tri-layer graphene, though, display such selectivity already for a pore size that barely encroaches on the first hydration layer, which is due to the more significant water loss from the second hydration layer. Measurement of selectivity and activation barriers from both first and second hydration layer barriers will help elucidate the behavior of biological ion channels. Moreover, the energy barriers responsible for selectivity - while small on the scale of hydration energies - are already relatively large, i.e., many kT. For separation of ions from water, therefore, one can exchange longer, larger radius pores for shorter, smaller radius pores, giving a practical method for maintaining exclusion efficiency while enhancing other properties (e.g., water throughput).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604754 | PMC |
http://dx.doi.org/10.1039/c7nr03838k | DOI Listing |
Sci Rep
January 2025
Raw Building Materials Technology and Processing Research Institute, Housing & Building National Research Center, HBRC, Cairo, Egypt.
Fabrication of heavy density mortar using aggregates reinforced with available solid inorganic chemical additives is of a great importance as a protective layer to mitigate radiations in nuclear facilities. The effect of lead oxide and borax decahydrate on the hydration kinetics was evaluated by determining setting time, leachability and compressive strength. To speed up the reaction, 0.
View Article and Find Full Text PDFChemosphere
January 2025
School of Mechanical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea. Electronic address:
In the field of solar steam generation, hydrogels with interfacial evaporation configurations stand as a promising candidate for solar evaporators. Hydrogel-based photothermal materials provide excellent hydration channels for supplying water to an evaporative layer due to their porous structure and hydrophilic nature. This work proposed a facile and in-situ fabrication of sodium alginate hydrogel incorporated with cellulose nanocrystals and polypyrrole as an effective photothermal material.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.
View Article and Find Full Text PDFRSC Adv
January 2025
CINVESTAV-Monterrey, PIIT Apodaca Nuevo León 66628 Mexico
The hydration shell of a protein is so important and an integral part of it, that protein's structure, stability and functionality cannot be conceived in its absence. This layer has unique properties not found in bulk water. However, ions, always present in the protein environment, disturb the hydration shell depending on their nature and concentration.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China.
The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!