An organometallic route to chiroptically active ZnO nanocrystals.

Nanoscale

Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.

Published: October 2017

The unique optical properties of zinc oxide nanocrystals (ZnO NCs) are strongly dependent on both the properties and the composition of the inorganic core-organic ligand interface. Developing a novel organometallic self-supporting approach, we report on the synthesis and characterization of ZnO nanocrystals coated by chiral monoanionic aminoalcoholate ligands. The resulting ZnO NCs are both chiroptically active and possess size dependent optical properties. The size and in consequence the emission color of the ZnO NCs could be simply adjusted by the characteristic of the aminoalcohol used.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr02843aDOI Listing

Publication Analysis

Top Keywords

zno ncs
12
chiroptically active
8
zno nanocrystals
8
optical properties
8
zno
5
organometallic route
4
route chiroptically
4
active zno
4
nanocrystals unique
4
unique optical
4

Similar Publications

Introduction: Green tea is a medicinal beverage extracted from the plant Camellia sinensis. Antioxidants that exist naturally can be extracted as pure compounds from their parent materials for nutraceutical and medicinal applications. The present study aims to assess the antioxidant activity of Zinc oxide-titanium dioxide nano-composites (ZnO-TiO2 NCs) containing green tea extract.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Unconventional Heterobidentate Coordination of 4-Hydroxypyridine Leading to Remarkably Strong Second-Harmonic Generation in Zn(CHNO).

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.

Herein, we report an unconventional heterobidentate coordination mode of conventional 4-hydroxypyridine ligand in a novel compound Zn(CHNO). The strong heterobidentate coordination interactions between Zn and 4-hydroxypyridine ligands promote a uniform alignment of the polarization of each [ZnON] tetrahedral building unit, resulting in remarkably strong second-harmonic generation (SHG) with an intensity that is the largest among all UV-transparent Zn-containing metal-organic compounds reaching 13.6×KDP.

View Article and Find Full Text PDF

The goal of the present work is to create ZnO/NiO nanocomposites (NCs) for the photocatalytic destruction of organic contaminants using the co-precipitation technique. To investigate physiochemical characteristics, FT-IR, UV visible spectroscopy, SEM, and XRD were used. The ZnO hexagonal phase and the NiO cubic phase in the ZnO/NiO NCs were verified by the diffraction pattern.

View Article and Find Full Text PDF

Interface engineering is the key to optimizing optoelectronic device performance, addressing challenges like reducing potential barriers, passivating interface traps, and controlling recombination of charges. Metal fluorides such as lithium fluoride are employed in interface modification within organic devices due to their strong dipole characteristics but carry health risks, high processing costs, and minimal impact on interface traps in organic electronics. Hence, this study investigates alternative metal chloride (MC) nanocrystals (sodium, cesium, rubidium, and potassium chlorides) that exhibit a strong dipole moment and are readily processable with the aim of reducing the influence of interface traps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!