At present, sustainability is of major importance in the cement industry, and the use of additions such as silica fume as clinker replacement contributes towards that goal. Special foundations, and particularly micropiles, are one of the most suitable areas for the use of sustainable cements. The aim of this research is to analyse the effects in the very long-term (for 600 days) produced by sulphate attack in the microstructure of grouts for micropiles in which OPC (ordinary Portland cement) has been replaced by 5% and 10% silica fume. This line of study is building on a previous work, where these effects were studied in slag and fly ash grouts. Grouts made using a commercial sulphate-resisting Portland cement were also studied. The non-destructive impedance spectroscopy technique, mercury intrusion porosimetry, and Wenner resistivity testing were used. Mass variation and the compressive strength have also been analysed. Apparently, impedance spectroscopy is the most suitable technique for studying sulphate attack development. According to the results obtained, grouts for micropiles with a content of silica fume up to 10% and exposed to an aggressive sulphate medium, have a similar or even better behaviour in the very long-term, compared to grouts prepared using sulphate-resisting Portland cement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578256PMC
http://dx.doi.org/10.3390/ma10080890DOI Listing

Publication Analysis

Top Keywords

silica fume
16
grouts micropiles
12
portland cement
12
sulphate attack
8
sulphate-resisting portland
8
impedance spectroscopy
8
grouts
6
cement
5
influence silica
4
fume
4

Similar Publications

Fly ash-cement composite backfill slurry, prepared by partially replacing cement with fly ash, has been demonstrated to effectively reduce the mine backfill costs and carbon emissions associated with cement production. However, the use of fly ash often results in insufficient early and medium-term strength of the backfill material. To address the demand for high medium-term strength in backfill materials under continuous mining and backfilling conditions, this study developed a silica fume-fly ash-cement composite backfill slurry.

View Article and Find Full Text PDF

By volume, cement concrete is one of the most widely used construction materials in the world. This requires a significant amount of Portland cement, and the cement industry, in turn, causes a significant amount of CO emissions. Therefore, the development of concrete with a reduced cement content is becoming an urgent problem for countries with a significant level of production and consumption of concrete.

View Article and Find Full Text PDF

Geopolymer concrete (GPC) offers a sustainable alternative by eliminating the need for cement, thereby reducing carbon dioxide emissions. Using durable concrete helps prevent the corrosion of reinforcing bars and reduces spalling caused by chemical attacks. This study investigates the impact of adding 5, 10, and 15% silica fumes (SF) on the mechanical and durability properties of GPC cured at 60 °C for 24 h.

View Article and Find Full Text PDF

The formulation of binary, ternary, and quaternary supplementary cementitious materials (SCMs) on an optimized silica fume amount using fly ash, ultrafine (MQ), and limestone powders (LS) is the most sustainable approach to recycling these types of solid wastes for durable concrete. The optimum replacement level of 10% silica fume was blended with different replacement levels of 5, 8, 10, and 15% MQ to formulate different ternary mixes to evaluate the filling effect of MQ. Different ternary mixes containing 10% silica fume and 5, 10, and 15% LS were also produced to examine the effectiveness of both ternary mixtures with either MQ or LS.

View Article and Find Full Text PDF

This study investigates the use of various industrial waste materials-silica fume (SF), cement kiln dust (CKD), calcium carbide residue (CCR), rice husk ash (RHA), and ground granulated blast furnace slag (GGBS)-as eco-friendly stabilizers for expansive clay soil (ECS). Laboratory tests were conducted to assess the impact of different proportions (3 %, 6 %, and 9 %) of these additives on the soil's physical, mechanical, and microstructural properties. Results indicated that the inclusion of industrial waste significantly improved the soil's behavior, with notable reductions in liquid limit (up to 37.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!