Hemorrhage is the most prominent effect of snake venom metalloproteinases (SVMPs) in human envenomation. The capillary injury is a multifactorial effect caused by hydrolysis of the components of the basement membrane (BM). The PI and PIII classes of SVMPs are abundant in viperid venoms and hydrolyze BM components. However, hemorrhage is associated mostly with PIII-class SVMPs that contain non-catalytic domains responsible for the binding of SVMPs to BM proteins, facilitating enzyme accumulation in the tissue and enhancing its catalytic efficiency. Here we report on Atroxlysin-Ia, a PI-class SVMP that induces hemorrhagic lesions in levels comparable to those induced by Batroxrhagin (PIII-class), and a unique SVMP effect characterized by the rapid onset of dermonecrotic lesions. Atroxlysin-Ia was purified from venom, and sequence analyses indicated that it is devoid of non-catalytic domains and unable to bind to BM proteins as collagen IV and laminin in vitro or in vivo. The presence of Atroxlysin-Ia was diffuse in mice skin, and localized mainly in the epidermis with no co-localization with BM components. Nevertheless, the skin lesions induced by Atroxlysin-Ia were comparable to those induced by Batroxrhagin, with induction of leukocyte infiltrates and hemorrhagic areas soon after toxin injection. Detachment of the epidermis was more intense in skin injected with Atroxlysin-Ia. Comparing the catalytic activity of both toxins, Batroxrhagin was more active in the hydrolysis of a peptide substrate while Atroxlysin-Ia hydrolyzed more efficiently fibrin, laminin, collagen IV and nidogen. Thus, the results suggest that Atroxlysin-Ia bypasses the binding step to BM proteins, essential for hemorrhagic lesions induced by PII- and P-III class SVMPs, causing a significantly fast onset of hemorrhage and dermonecrosis, due to its higher proteolytic capacity on BM components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577573PMC
http://dx.doi.org/10.3390/toxins9080239DOI Listing

Publication Analysis

Top Keywords

hemorrhage dermonecrosis
8
atroxlysin-ia
8
induced atroxlysin-ia
8
atroxlysin-ia pi-class
8
snake venom
8
non-catalytic domains
8
hemorrhagic lesions
8
comparable induced
8
induced batroxrhagin
8
lesions induced
8

Similar Publications

Background: Loxoscelism refers to a set of clinical manifestations caused by the bite of spiders from the genus. The classic clinical symptoms are characterized by an intense inflammatory reaction at the bite site followed by local necrosis and can be classified as cutaneous loxoscelism. This cutaneous form presents difficult healing, and the proposed treatments are not specific or effective.

View Article and Find Full Text PDF

African spitting cobra, Naja nigricincta nigricincta (Zebra snake), envenomation is an important cause of snakebite morbidity and mortality in Namibia. The snake is endemic to central and northern Namibia as well as southern Angola. The venom is mainly cytotoxic, resulting in aggressive dermo-necrosis and often accompanied by severe systemic complications.

View Article and Find Full Text PDF

Anti-inflammatory, healing and antiophidic potential of Jatropha mollissima (Pohl) Baill. (Euphorbiaceae): From popular use to pharmaceutical formulation in gel.

Biomed Pharmacother

April 2024

Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, Av. General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil. Electronic address:

Jatropha mollissima (Pohl) Baill. (Euphorbiaceae) is widely used in traditional medicine to treat inflammatory disorders. So, a topical gel containing the hydroethanolic extract of its leaves was developed and evaluated for its anti-inflammatory, wound healing, and antiophidic properties in mice.

View Article and Find Full Text PDF

Snakebite envenoming is a global public health issue that causes significant morbidity and mortality, particularly in low-income regions of the world. The clinical manifestations of envenomings vary depending on the snake's venom, with paralysis, haemorrhage, and necrosis being the most common and medically relevant effects. To assess the efficacy of antivenoms against dermonecrosis, a preclinical testing approach involves in vivo mouse models that mimic local tissue effects of cytotoxic snakebites in humans.

View Article and Find Full Text PDF

The Health Status of Horses Used for at Least Six Complete Cycles of Loxoscelic Antivenom Production.

Toxins (Basel)

September 2023

Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil.

Antivenom production against venom relies on horses being immunized and bled for plasma harvest. One horse can partake in several cycles of antivenom production, which will require years of constant venom and adjuvant inoculation and bleeding. The actual impact on the health of horses that participate in several antivenom-producing cycles is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!