Biomimetic hydride transfer catalysts are a promising route to efficiently convert CO into more useful products, but a lack of understanding about their atomic-scale reaction mechanisms slows their development. To this end, we report a computational quantum chemistry study of how aqueous solvation influences CO reduction reactions facilitated by sodium borohydride (NaBH ) and a partially oxidized derivative (NaBH OH). This work compares 0 K reaction barriers from nudged elastic band calculations to free-energy barriers obtained at 300 K using potentials of mean force from umbrella sampling simulations. We show that explicitly treating free energies from reaction pathway sampling has anywhere from a small to a large effect on the reaction-energy profiles for aqueous-phase hydride transfers to CO . Sampling along predefined reaction coordinates is thus recommended when it is computationally feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700608 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China.
Proton-electron transfer (PET) processes play a pivotal role in numerous electrochemical reactions; yet, effectively harnessing them remains a formidable challenge. Consequently, unveiling the PET pathway is imperative to elucidate the factors influencing the efficiency and selectivity of small molecule electrochemical conversion. In this study, a Zn-NC model catalyst with N and C vacancies was synthesized using a hydriding method to investigate the universal impact of PET on CO electroreduction.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Structural Biochemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany. Electronic address:
Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation and halogenation. The monooxygenase components require a separate flavin reductase, which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300 RA, The Netherlands.
Understanding the electrolyte factors governing the electrochemical CO reduction reaction (CORR) is fundamental for selecting the optimized electrolyte conditions for practical applications. While noble metals are frequently studied, the electrolyte effects on the CORR on Sn catalysts are not well explored. Here, we studied the electrolyte effect on Sn metallic electrodes, investigating the impact of electrolyte concentration, cation identity, and anion properties, and how it shapes the CORR activity and selectivity.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy.
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation.
View Article and Find Full Text PDFChemSusChem
December 2024
University of New England, School of Science and Technology, 1 Elm Avenue, 2351, Armidale, AUSTRALIA.
Levoglucosenone is an important platform chemical and the principal product of acid-catalyzed cellulose pyrolysis, formed through several intermediates including levoglucosan. An acid-catalyzed redox isomerization of substituted 6,8-dioxabicyclo[3.2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!