Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conformational assignments in molecular beam experiments are often based on relative energies, although there are many other relevant parameters, such as conformer-dependent oscillator strengths, Franck-Condon factors, quantum yields and vibronic couplings. In the present contribution, we investigate the conformational landscape of 1,3-dimethoxybenzene using a combination of rotationally resolved electronic spectroscopy and high level ab initio calculations. The electronic origin of one of the three possible planar rotamers (rotamer (0,180) with both substituents pointing at each other) has not been found. Based on the calculated potential energy surface of 1,3-dimethoxybenzene in the electronic ground and lowest excited state, we show that this can be explained by a distorted non-planar geometry of rotamer (0,180) in the S state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp04401a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!