Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2175/106143017X14902968254881 | DOI Listing |
Microbes Environ
January 2025
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST).
Myxobacteria, belonging to the phylum Myxococcota, are ubiquitous in soil, marine, and other environments. A recent metagenomic sequencing ana-lysis showed that Myxococcota are predominant in activated sludge systems; however, their metabolic traits remain unclear. In the present study, we exami-ned the potential biological functions of 46 metagenomic bins of Myxococcota reconstructed from activated sludge samples from four municipal sewage treatment plants.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
Stable inhibition of nitrite-oxidizing bacteria (NOB) is a significant challenge in achieving partial nitrification (PN) and partial nitrification-anaerobic ammonia oxidation (PNA). Growing evidence suggested that NOB can develop resistance to suppression over time, leading to the re-enrichment of NOB within reactors. To address these issues, this study aimed to achieve stable PN by regulating SRT to selectively washout NOB during the lag phase of activity recovery following FA/FNA exposure.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Engineering, Hangzhou Normal University, Hangzhou 310018 China.
Continuous high-intensity light exposure can inhibit anaerobic ammonium oxidation (anammox) bacteria activity, though the specific impacts on anammox reactor performance remain unclear. This study investigates the effects of long-term light stress on anammox sludge reactors and explores the use of tea polyphenols as an engineering interventions to mitigate photo oxidation damage. The results showed that the nitrogen removal efficiency (NRE) of the reactor rapidly deteriorated to 41.
View Article and Find Full Text PDFSci Total Environ
January 2025
Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
Extracellular polymeric substances (EPS) significantly influence the properties and performance of waste activated sludge. Various pretreatment protocols with different extraction efficiency and characteristics of EPS have been reported, which markedly impact subsequent treatment and disposal of sewage sludge. This study systematically assesses the EPS properties from twelve extraction pretreatment methods.
View Article and Find Full Text PDFSci Total Environ
January 2025
University of Natural Resources and Life Sciences, Institute of Soil Physics and Rural Water Management, Vienna 1190, Austria.
Several groundwater quality investigations have been conducted in coastal regions that are commonly exposed to multiple anthropogenic stressors. Nonetheless, such studies remain challenging because they require focused-diagnostic approaches for a comprehensive understanding of groundwater contamination. Therefore, this study integrates a multi-tracer approach to acquire comprehensive information allowing for an improved understanding of the origins of groundwater contamination, the relative contribution of contaminants, and their biogeochemical cycling within a coastal groundwater system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!