Understanding electrochemical and chemical reactions at the electrode-electrolyte interface is of fundamental importance for the safety and cycle life of Li-ion batteries. Positive electrode materials such as layered transition metal oxides exhibit different degrees of chemical reactivity with commonly used carbonate-based electrolytes. Here we employed density functional theory methods to compare the energetics of four different chemical reactions between ethylene carbonate (EC) and layered (LiMO) and rocksalt (MO) oxide surfaces. EC dissociation on layered oxides was found energetically more favorable than nucleophilic attack, electrophilic attack, and EC dissociation with oxygen extraction from the oxide surface. In addition, EC dissociation became energetically more favorable on the oxide surfaces with transition metal ions from left to right on the periodic table or by increasing transition metal valence in the oxides, where higher degree of EC dissociation was found as the Fermi level was lowered into the oxide O 2p band.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.7b01655DOI Listing

Publication Analysis

Top Keywords

transition metal
12
chemical reactivity
8
li-ion batteries
8
chemical reactions
8
oxide surfaces
8
energetically favorable
8
chemical
4
reactivity descriptor
4
descriptor oxide-electrolyte
4
oxide-electrolyte interface
4

Similar Publications

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

Magnetocaloric high-entropy alloys (HEAs) have recently garnered significant interest owing to their potential applications in magnetic refrigeration, offering a wide working temperature range and large refrigerant capacity. In this study, we thoroughly investigated the structural, magnetic, and magnetocaloric properties of equiatomic GdDyHoErTm HEAs. The as-cast alloy exhibits a single hexagonal phase, a randomly distributed grain orientation, and complex magnetism.

View Article and Find Full Text PDF

Realization of a sustainable hydrogen economy in the future requires the development of efficient and cost-effective catalysts for its production at scale. MXenes (MX) are a class of 2D materials with 'n' layers of carbon or nitrogen (X) interleaved by 'n+1' layers of transition metal (M) and have emerged as promising materials for various applications including catalysts for hydrogen evolution reaction (HER). Their properties are intimately related to both their composition and their atomic structure.

View Article and Find Full Text PDF

Barriers and Carriers for Transition Metal Homeostasis in Plants.

Plant Commun

December 2024

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Transition metals are a type of metal with high chemical activity and play critical roles in plant growth and development, reproduction and environmental adaptation, as well as for human health. However, the acquisition, transportation and storage of these metals always pose specific challenges due to their nature of high reactivity and poor solubility. In addition, distinct yet interconnected apoplastic and symplastic diffusion barriers impede their movement throughout the plants.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!