Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
RNA-seq is a powerful and popular technology for studying posttranscriptional regulation of gene expression, such as alternative splicing. The first step in analyzing RNA-seq data is to map the sequenced reads back to the genome. However, commonly used RNA-seq aligners use the consensus splice site dinucleotide motifs to map reads across splice junctions. This can be deceiving due to genomic variants that create novel splice site dinucleotides, leaving the personal splice junction reads un-mapped to the reference genome. We developed and evaluated a method called RNA Personal Genome Alignment Analyzer (rPGA) to identify "hidden" splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-7204-3_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!