Background: CMIS techniques are heavily dependent on placement of lateral interbody cages. Cages with an increased lordotic angle are being advocated to improve segmental lordosis and SVA. We assessed the segmental lordosis achieved with the individual cages. We further studied three variables and the effect each had on segmental lordosis: the lordosis angle of the cage, the position of the cage in the intervertebral space, and the level that it has been placed.
Methods: This is a retrospective study of 66 consecutive patients who underwent lateral interbody fusion using lordotic cages as part of CMIS correction of scoliosis from June 2012 to January 2016. Standing radiographs at pre op and 6-week follow-up were reviewed to identify the position of the cage in the intervertebral space and the amount of segmental lordosis achieved.
Results: A total of 224 cages were placed. The 6°, 10°, 12°, and 20° cages achieved a mean segmental lordosis of 9.00°, 13.09°, 13.23°, and 18.32°, respectively (P < .05). Additionally, cages placed in the anterior, middle, and posterior 3rd of the disk space produced 13.02°, 11.47°, and 8.23° of lordosis, respectively (P < .05). Stratifying by level, cages placed at T12-L1, L1-2, L2-3, L3-4, and L4-5 translated to mean segmental lordotic values of 8.43°, 10.02°, 11.38°, 12.91°, and 14.58°, respectively (P < .05).
Conclusions: The angle of the cage had an impact on segmental lordosis. Achieved segmental lordosis was notably more when the cage was placed in lower lumbar levels. Additionally, cages placed in the posterior 3rd of the intervertebral space had significantly worse segmental lordosis compared to those placed in the anterior or middle 3rd. Our study shows that an average delta change of 8.03° can be achieved with 12° cages and this when done at each subsequent level results in a progressive harmonious creation of lordosis. IRB approval was obtained for this study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537951 | PMC |
http://dx.doi.org/10.14444/4023 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300000, China.
Loss of cervical lordosis (LOCL) is the most common postoperative cervical deformity. This study aimed to identify the predictors of LOCL by investigating the relationship between various factors and LOCL development after surgery for cervical spinal cord tumors. A retrospective analysis was conducted on 51 patients who underwent cervical spinal tumor resection at a single center.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
Objective: This study aims to perform a meta-analysis that integrates multiple literature sources to evaluate the clinical efficacy of oblique lumbar interbody fusion (OLIF) versus minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for treating lumbar degenerative diseases (LDD).
Methods: A systematic search was conducted across various databases, including CNKI, VIP, WANFANG DATA, SinoMed, PubMed, Cochrane Library, Embase, and Web of Science, for clinical comparative studies on OLIF and MIS-TLIF for treating LDD, covering the time frame from the inception of the databases to September 2024. Following PRISMA guidelines, studies were screened, assessed, and data were extracted rigorously.
Indian J Orthop
January 2025
Department of Pharmacology, AIl India Institute of Medical Sciences, Bhubaneswar, 751019 India.
Purpose: Transforaminal lumbar interbody fusion (TLIF) and oblique lumbar interbody fusion (OLIF) are the most commonly conducted operations for interbody fusions. In addition to fusion, the restoration of proper spinal alignment has become crucial for achieving favorable functional outcomes. There is a lack of agreement on which lumbar interbody fusion technique provides the most effective correction for sagittal spinopelvic parameters (SSPs).
View Article and Find Full Text PDFWorld Neurosurg
December 2024
Spine Unit, Department of Orthopedic Surgery, Rigshospitalet, Copenhagen University Hospital, Inge Lehmanns Vej 6, 2100 Copenhagen, Denmark.
Study Design: Retrospective cohort study OBJECTIVES: The purpose of this study was to compare the 2-year radiological outcome and revision rates in patients with ASD treated with either PSO or PLIF, when PLIF was used to improve sagittal balance.
Methods: In 2016, PLIF was introduced at our institution as an alternative method when restoring lumbar lordosis. We analyzed two cohorts of patients with ASD undergoing either: PSO in 2010-2015 or PLIF in 2016-2020, retrospectively.
Int J Spine Surg
December 2024
Spine Team, Division of Orthopedic Surgery and Musculoskeletal Trauma Care, Geneva University Hospitals, Faculty of Medecine, University of Geneva, Geneva, Switzerland
Background: Navigation increases the precision and safety of pedicle screw placement and has been used to place interbody cages for lateral lumbar interbody fusion. Single-position surgery shortens its duration and that of anesthesia. The aim of this study was the feasibility of simultaneous cage and screw placement in a single prone position using intraoperative navigation without the need for additional fluoroscopy and a detailed technical description of this procedure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!