A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer Assisted Cobb Angle Measurements: A novel algorithm. | LitMetric

Background: The standard for evaluating scoliosis is PA radiographs using Cobb angle to measure curve magnitude. Newer PACS systems allow easier Cobb angle calculations, but have not improved inter/intra observer precision of measurement. Cobb angle and its progression are important to determine treatment; therefore, angle variability is not optimal. This study seeks to demonstrate that a performance equivalent to that achieved in the manual method is possible using a novel computer algorithm with limited user input. The authors compared Cobb angles from predetermined spinal levels in the average attending score versus the computer assisted approach.

Methods: Retrospective analysis of PA radiographs from 58 patients previously evaluated for scoliosis was collected. Predesignated spinal levels (e.g., T2-T10) were assigned for different curves and calculated by Cobb method. Four spine surgeons evaluated these Cobb angles. Their average scores were measured and compared to formulated values using the novel computer-based algorithm. Literature reports inter-observer reliability is 6.3-7.2degrees. Limits of accuracy were set at 5 degrees of average orthopedic surgeons' score.

Results: The computer-based algorithm calculated Cobb angles within 5 degrees of orthopedic surgeons' average with a standard deviation of 3.2 degrees. This result was based on a 95% confidence interval with p values <0.001. The computer algorithm was plotted against average angle determined by the surgeons, with individual determinations and linear regression (r =0.90). The average difference between surgeons' measures and computer algorithm was 0.4 degrees(SD= 3.2degrees, n=79). There was a tendency for the computer algorithm program to overestimate the angle at larger angles, but difference was small with r = 0.09.

Conclusions: Our study showed the novel computer based algorithm was an efficient and reliable method to assess scoliotic curvature in the coronal plane with the possibility of expediting clinic visits, ensuring reliability of calculation and decreasing patient exposure to radiation. Level of Evidence: III.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537975PMC
http://dx.doi.org/10.14444/4021DOI Listing

Publication Analysis

Top Keywords

cobb angle
16
cobb angles
12
computer assisted
8
cobb
8
spinal levels
8
calculated cobb
8
computer-based algorithm
8
orthopedic surgeons'
8
angle
5
assisted cobb
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!