A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hybrid organic-inorganic coatings via electron transfer behaviour. | LitMetric

Hybrid organic-inorganic coatings via electron transfer behaviour.

Sci Rep

Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.

Published: August 2017

A novel method to functionalize the surface of inorganic coating by growing organic coating has been investigated based on microstructural interpretation, electrochemical assessment, and quantum chemical analysis. For this purpose, inorganic coating with magnesium aluminate, magnesium oxide, and titanium dioxide was prepared on magnesium alloy via plasma electrolytic oxidation (PEO), and, then, subsequent dip-coating method was used to tailor organic coating using diethyl-5-hydroxyisophthalate (DEIP) as organic molecules. The incorporation of TiO particles worked as a sealing agent to block the micro-defects which resulted mainly from the intense plasma sparks during PEO. In addition, such incorporation played an important role in enhancing the adhesion between inorganic and organic coatings. The use of DEIP as organic corrosion inhibitor resulted in a significant decrease in porosity of inorganic coating. Quantum chemical calculation was used to clarify the corrosion inhibition mechanism which was activated by introduction of DEIP. Thus, the electrochemical analysis based on potentiodynamic polarization and impedance spectroscopy tests in 3.5 wt% NaCl solution suggested that corrosion resistance of magnesium alloy sample was enhanced significantly due to a synergistic effect arising from the hybrid inorganic and organic coatings. This phenomenon was explained in relation to electron transfer behaviour between inorganic and organic coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539106PMC
http://dx.doi.org/10.1038/s41598-017-07691-xDOI Listing

Publication Analysis

Top Keywords

inorganic coating
12
inorganic organic
12
organic coatings
12
electron transfer
8
transfer behaviour
8
organic coating
8
quantum chemical
8
magnesium alloy
8
deip organic
8
organic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!