Peroxiredoxin 2 (PRDX2) is an antioxidant and molecular chaperone that can be secreted from tumor cells. But the role of PRDX2 in acute myocardial infarction (AMI) is not clear. In the current study, we demonstrate the role of PRDX2 from clinical trials, H9c2 cells and in a mouse model. ELISA analysis shows that serum concentrations of VEGF and inflammatory factor IL-1β, TNF-α and IL-6 were increased in AMI patients compared to a control group. The expression of PRDX2 was also upregulated. In vivo experiments show that the expression of PRDX2 inhibits hypoxia-induced oxidative stress injury to H9c2 cells. However, PRDX2 expression promotes TLR4 mediated inflammatory factor expression and VEGF expression under hypoxia conditions. PRDX2 overexpression in H9c2 cells also promotes human endothelial cell migration, vasculogenic mimicry formation and myocardial hypertrophy related protein expression. The overexpression of PRDX2 inhibits ROS level and myocardial injury after AMI but promotes inflammatory responses in vivo. Immunocytochemistry and immunofluorescence analysis show that overexpression of PRDX2 promotes angiogenesis and myocardial hypertrophy. Taken together, our results indicate that PRDX2 plays two roles in acute infarction - the promotion of cell survival and inflammatory myocardial hypertrophy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539327 | PMC |
http://dx.doi.org/10.1038/s41598-017-06718-7 | DOI Listing |
Int J Cardiol
January 2025
Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
Electrochemical impedance spectroscopy (EIS) serves as a non-invasive technique for assessing cell status, while mechanical stretching plays a pivotal role in stimulating cells to emulate their natural environment. Integrating these two domains enables the concurrent application of mechanical stimulation and EIS in a stretchable cell culture system. However, challenges arise from the difficulty in creating a durable and stable stretchable impedance electrode array.
View Article and Find Full Text PDFInt Rev Immunol
January 2025
Department of Cardiology, Loudi Central Hospital, Loudi City, Hunan Province, China.
Objective: Heart failure (HF) causes structural and functional changes in the heart, with the pyroptosis-mediated inflammatory response as the core link in HF pathogenesis. E3 ubiquitin ligases participate in cardiovascular disease progression. Here, we explored the underlying molecular mechanisms of E3 ubiquitin ligase Smurf1 in governing HF.
View Article and Find Full Text PDFSci Rep
January 2025
Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
Eur J Pharmacol
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China. Electronic address:
Several studies have associated the epitranscriptomic RNA modification of N6-methyladenosine (mA) with cardiovascular diseases; however, how mA modification affects cardiomyocyte pyroptosis after myocardial infarction (MI) remains unknown. Here, we showed that AlkB homolog 5 (ALKBH5), an mA demethylase, is crucial in cardiomyocyte pyroptosis after MI. We used MI rat and mouse models, a cell hypoxia model of rat primary cardiomyocytes (RCMs), and rat embryonic ventricle cell line (H9c2) to explore the functional role of mA modification and ALKBH5 in the heart and cardiomyocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!