Tumor-Treating Fields: A Fourth Modality in Cancer Treatment.

Clin Cancer Res

Virginia G. Piper Cancer Center Clinical Trials, HonorHealth Research Institute, Scottsdale, Arizona.

Published: January 2018

Despite major advances in therapy, cancer continues to be a leading cause of mortality. In addition, toxicities of traditional therapies pose a significant challenge to tolerability and adherence. TTFields, a noninvasive anticancer treatment modality, utilizes alternating electric fields at specific frequencies and intensities to selectively disrupt mitosis in cancerous cells. TTFields target proteins crucial to the cell cycle, leading to mitotic arrest and apoptosis. TTFields also facilitate an antitumor immune response. Clinical trials of TTFields have proven safe and efficacious in patients with glioblastoma multiforme (GBM), and are FDA approved for use in newly diagnosed and recurrent GBM. Trials in other localized solid tumors are ongoing. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-17-1117DOI Listing

Publication Analysis

Top Keywords

tumor-treating fields
4
fields fourth
4
fourth modality
4
modality cancer
4
cancer treatment
4
treatment despite
4
despite major
4
major advances
4
advances therapy
4
therapy cancer
4

Similar Publications

Protocol for applying Tumor Treating Fields in mouse models of cancer using the inovivo system.

STAR Protoc

January 2025

Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:

Tumor Treating Fields (TTFields) are electric fields clinically approved for cancer treatment, delivered via arrays attached to the patient's skin. Here, we present a protocol for applying TTFields to torso orthotopic and subcutaneous mouse tumor models using the inovivo system. We guide users on proper system component connections, study protocol design, mouse fur depilation, array application, and treatment condition adjustment and monitoring.

View Article and Find Full Text PDF

Background: Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain.

Objective: The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations.

View Article and Find Full Text PDF

The manifestation of glioblastoma, IDH-wildtype (GB) as intracranial hemorrhage (ICH) presents diagnostic and therapeutic challenges. Molecular characteristics, including TERT promoter mutation, EGFR amplification, and chromosome 7 gain/10 loss, were incorporated to diagnose GB in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System. When molecular analyses fail to detect low fractions of these genetic alterations, the integrated diagnosis of GB can be enigmatic.

View Article and Find Full Text PDF

Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy).

View Article and Find Full Text PDF
Article Synopsis
  • The EF-14 clinical trial confirmed the safety and efficacy of tumor-treating fields (TTFields) in glioblastoma, prompting this study to assess its status among Japanese patients meeting the same criteria.
  • A multicenter retrospective analysis was conducted with data from 607 patients, ultimately focusing on 537, where 39% received TTField treatment, highlighting factors like younger age and having a caregiver as key determinants for usage.
  • Results showed that despite high compliance rates (over 75%) and a median usage duration of 11 months, TTFields did not significantly impact progression-free survival or overall survival in patients with glioblastoma.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!