The generation of neocortical neurons from neural progenitor cells (NPCs) is primarily controlled by transcription factors binding to DNA in the context of chromatin. To understand the complex layer of regulation that orchestrates different NPC types from the same DNA sequence, epigenome maps with cell type resolution are required. Here, we present genomewide histone methylation maps for distinct neural cell populations in the developing mouse neocortex. Using different chromatin features, we identify potential novel regulators of cortical NPCs. Moreover, we identify extensive H3K27me3 changes between NPC subtypes coinciding with major developmental and cell biological transitions. Interestingly, we detect dynamic H3K27me3 changes on promoters of several crucial transcription factors, including the basal progenitor regulator We use catalytically inactive Cas9 fused with the histone methyltransferase Ezh2 to edit H3K27me3 at the locus , which results in reduced Tbr2 expression and lower basal progenitor abundance, underscoring the relevance of dynamic H3K27me3 changes during neocortex development. Taken together, we provide a rich resource of neocortical histone methylation data and outline an approach to investigate its contribution to the regulation of selected genes during neocortical development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5579386PMC
http://dx.doi.org/10.15252/embj.201796764DOI Listing

Publication Analysis

Top Keywords

h3k27me3 changes
12
progenitor cells
8
transcription factors
8
histone methylation
8
dynamic h3k27me3
8
basal progenitor
8
epigenome profiling
4
profiling editing
4
neocortical
4
editing neocortical
4

Similar Publications

Isolation of proteins on chromatin (iPOC) reveals signaling pathway-dependent alterations in the DNA-bound proteome.

Mol Cell Proteomics

January 2025

Division of Proteomics of Stem Cell and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg Germany; Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany. Electronic address:

Signaling pathways often convergence on transcription factors (TFs) and other DNA-binding proteins (DBPs) that regulate chromatin structure and gene expression, thereby governing a broad range of essential cellular functions. However, the repertoire of DBPs is incompletely understood even for the best-characterized pathways. Here, we optimized a strategy for the isolation of Proteins on Chromatin (iPOC) exploiting tagged nucleoside analogues to label the DNA and capture associated proteins, thus enabling the comprehensive, sensitive, and unbiased characterization of the DNA-bound proteome.

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

Comprehensive analysis of protein post-translational modifications reveals PTPN2-STAT1-AOX axis-mediated tumor progression in hepatocellular carcinomas.

Transl Oncol

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Zhejiang Province, China; Zhejiang University Cancer Center, Hangzhou, China. Electronic address:

Hepatocellular carcinoma (HCC) is a common malignant tumor. Although the proteomics of HCC is well studied, the landscape of post-translational modifications (PTMs) in HCC is poorly understood. The PTMs themselves and their crosstalk might be deeply involved in HCC development and progression.

View Article and Find Full Text PDF

Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3.

Genome Biol

January 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.

Background: The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation.

Results: In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants.

View Article and Find Full Text PDF

Maternal obesity alters histone modifications mediated by the interaction between Ezh2 and Ampk, impairing neural differentiation in the developing embryonic brain cortex.

J Biol Chem

January 2025

Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, UAE. Electronic address:

Neurodevelopmental disorders have complex origins that manifest early during embryonic growth and are associated with intricate gene regulation dynamics. A perturbed metabolic environment such as hyperglycemia or dyslipidemia, particularly due to maternal obesity, poses a threat to the optimal development of the embryonic central nervous system. Accumulating evidence suggests that these metabolic irregularities during pregnancy may alter neurogenesis pathways, thereby predisposing the developing fetus to neurodevelopmental disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!