Background: Transcription factor binding affinities to DNA play a key role for the gene regulation. Learning the specificity of the mechanisms of binding TFs to DNA is important both to experimentalists and theoreticians. With the development of high-throughput methods such as, e.g., ChiP-seq the need to provide unbiased models of binding events has been made apparent. We present EMQIT a modification to the approach introduced by Alamanova et al. and later implemented as 3DTF server. We observed that tuning of Boltzmann factor weights, used for conversion of calculated energies to nucleotide probabilities, has a significant impact on the quality of the associated PWM matrix.
Results: Consequently, we proposed to use receiver operator characteristics curves and the 10-fold cross-validation to learn best weights using experimentally verified data from TRANSFAC database. We applied our method to data available for various TFs. We verified the efficiency of detecting TF binding sites by the 3DTF matrices improved with our technique using experimental data from the TRANSFAC database. The comparison showed a significant similarity and comparable performance between the improved and the experimental matrices (TRANSFAC). Improved 3DTF matrices achieved significantly higher AUC values than the original 3DTF matrices (at least by 0.1) and, at the same time, detected notably more experimentally verified TFBSs.
Conclusions: The resulting new improved PWM matrices for analyzed factors show similarity to TRANSFAC matrices. Matrices had comparable predictive capabilities. Moreover, improved PWMs achieve better results than matrices downloaded from 3DTF server. Presented approach is general and applicable to any energy-based matrices. EMQIT is available online at http://biosolvers.polsl.pl:3838/emqit .
Reviewers: This article was reviewed by Oliviero Carugo, Marek Kimmel and István Simon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539975 | PMC |
http://dx.doi.org/10.1186/s13062-017-0189-y | DOI Listing |
Biol Direct
August 2017
Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
Background: Transcription factor binding affinities to DNA play a key role for the gene regulation. Learning the specificity of the mechanisms of binding TFs to DNA is important both to experimentalists and theoreticians. With the development of high-throughput methods such as, e.
View Article and Find Full Text PDFNucleic Acids Res
July 2012
Heinrich-Heine University of Duesseldorf, Universitaetstr. 1, 40225 Duesseldorf, Germany.
We present the webserver 3D transcription factor (3DTF) to compute position-specific weight matrices (PWMs) of transcription factors using a knowledge-based statistical potential derived from crystallographic data on protein-DNA complexes. Analysis of available structures that can be used to construct PWMs shows that there are hundreds of 3D structures from which PWMs could be derived, as well as thousands of proteins homologous to these. Therefore, we created 3DTF, which delivers binding matrices given the experimental or modeled protein-DNA complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!