Background: Bull fertility is the degree of sperm's ability to fertilize and activate the egg and support embryo development, and this is critical for herd reproductive performance. We used the bull as a unique model organism for the study of male fertility because cattle genetics and physiology is similar to those of other mammals including humans. Moreover, reliable fertility data along with well-established in vitro systems are available for bovine. The objective of this original study was to ascertain evolutionary diversification and expression dynamics of Testis Specific Histone 2B (TH2B) in sperm from Holstein bulls with different fertility scores.

Methods: The intensity of TH2B was determined by using flow cytometry in sperm from 13 high and 13 low fertility bulls. Expression levels of TH2B were measured using immunofluorescence and Western blotting in sperm from five high and five low fertility bulls. Sequence identity, evolutionary distance and interactome of TH2B were evaluated by dotmatcher, STRING and Cytoscape. Data were analyzed using linear mixed effects model and regression plots were drawn.

Results: The intensity of TH2B as measured by flow cytometry was significantly affected by an interaction between fertility group and fertility score (P = 0.0182). The intensity of TH2B in sperm from the high fertility group decreased (P = 0.0055) as fertility increased. TH2B was constantly detectable in sperm and expression levels of TH2B decreased in relation to fertility in sperm from the high fertility group (P = 0.018). TH2B biological functions include male gamete generation, chromosome organization, DNA packaging, DNA conformation change, chromatin organization, nucleosome organization, chromatin disassembly, spermatid nucleus elongation, spermatid nucleus differentiation, sperm motility, chromatin organization, chromatin condensation, chromatin silencing, nucleus organization, and chromatin remodeling (P < 0.05).

Conclusions: We elucidated the cellular localization and molecular physiology of TH2B using both computational and cell biology approaches. In addition to advancing the fundamental science of mammalian male gamete, the present findings can be potentially used to evaluate semen quality and predict male fertility in the future.

Trial Registration: This study did not involve any live animals. We did not perform any anesthesia, euthanasia, or any kind of animal sacrifice. The cryopreserved semen samples were obtained from Alta Genetics, Inc., Watertown, WI, USA. All samples were preserved in liquid nitrogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539985PMC
http://dx.doi.org/10.1186/s12958-017-0274-1DOI Listing

Publication Analysis

Top Keywords

sperm high
16
fertility
12
intensity th2b
12
fertility group
12
organization chromatin
12
th2b
9
testis specific
8
specific histone
8
sperm
8
th2b sperm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!