Incipient defects in bearings are traditionally diagnosed either by developing discriminative models for features that are extracted from raw acoustic emission (AE) signals, or by detecting peaks at characteristic defect frequencies in the envelope power spectrum of the AE signals. Under variable speed conditions, however, such methods do not yield the best results. This letter proposes a technique for diagnosing incipient bearing defects under variable speed conditions, by extracting features from different sub-bands of the inherently non-stationary AE signal, and then classifying bearing defects using a weighted committee machine, which is an ensemble of support vector machines and artificial neural networks. The proposed method also improves the generalization performance of the neural networks to enhance their classification accuracy, particularly with limited training data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4991329 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!