This paper describes the effect of two types of temporal permutations of the speech waveform on speech intelligibility. Using an overlap-add procedure with triangular-shaped windows for frame lengths of 1/8 to 2048 ms, the temporal order of the speech samples within each frame was subjected to either of two types of permutations: time-reversal or randomization. For both permutations, speech intelligibility tests expectantly show 100% intelligibility for the very short frame lengths containing only a few speech samples. Intelligibility drops to essentially zero toward longer frame lengths of around 1 ms. Interestingly, only for the reverse condition, intelligibility recovers to essentially 100% for frame lengths in the 4-32 ms range, dropping again to zero for frame lengths exceeding about 100 ms. Tests for the Japanese and the English language show essentially similar results. The data are interpreted along the lines of a previous paper by Kazama and the present authors [J. Acoust. Soc. Am. 127(3), 1432-1439 (2010)]. As in that previous paper, the loss of temporal envelope correlation shows a pattern very similar to that of the intelligibility data, illustrating again the importance of the preservation of narrow-band envelopes for speech intelligibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4992027 | DOI Listing |
Med Phys
January 2025
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Respiratory motion during radiotherapy (RT) may reduce the therapeutic effect and increase the dose received by organs at risk. This can be addressed by real-time tracking, where respiration motion prediction is currently required to compensate for system latency in RT systems. Notably, for the prediction of future images in image-guided adaptive RT systems, the use of deep learning has been considered.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The development of ecological fertilizers has become crucial in modern agriculture due to the increasing global population and diminishing arable land resources. Herein, a plant growth-promoting fertilizer (UKS) with dual functions of slow-release and water-retention was prepared by combining liquid-phase intercalation method and crosslinking gel method. The physicochemical properties of UKS were analyzed and its dissolution, slow-release, and water-retention properties were systematically evaluated.
View Article and Find Full Text PDFDystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
Camera-based single-molecule techniques have emerged as crucial tools in revolutionizing the understanding of biochemical and cellular processes due to their ability to capture dynamic processes with high precision, high-throughput capabilities, and methodological maturity. However, the stringent requirement in photon number per frame and the limited number of photons emitted by each fluorophore before photobleaching pose a challenge to achieving both high temporal resolution and long observation times. In this work, we introduce MUFFLE, a supervised deep-learning denoising method that enables single-molecule FRET with up to 10-fold reduction in photon requirement per frame.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!