Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The differentiations in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of 0.24 g/(g VSS·d), were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed that a high dissolved oxygen concentration (>1.8 mg/l) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus ) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of 40.4 mg/(g VSS·h) under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and the few spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish the CANON process independently under oxygen limiting conditions, maintaining a diversity of granular size would facilitate the stability of the suspended growth CANON system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.1705.05042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!