The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that initiates a transcriptional pathway responsible for the expression of CYP1A subfamily members, key to the metabolism of xenobiotic compounds. Toxic planar halogenated aromatic hydrocarbons, including dioxin and PCBs, are capable of activating the AHR, and while dioxin and PCB inputs into the environment have been dramatically curbed following strict regulatory efforts in the United States, they persist in the environment and exposures remain relevant today. Little is known regarding the effects that long-term chronic exposures to dioxin or dioxin-like compounds might have on the development and subsequent health of offspring from exposed individuals, nor is much known regarding AHR expression in reptilians. Here, we characterize AHR and CYP1A gene expression in embryonic and juvenile specimen of a long-lived, apex predator, the American alligator (Alligator mississippiensis), and investigate variation in gene expression profiles in offspring collected from sites conveying differential exposures to environmental contaminants. Both age- and tissue-dependent patterning of AHR isoform expression are detected. We characterize two downstream transcriptional targets of the AHR, CYP1A1 and CYP1A2, and describe conserved elements of their genomic architecture. When comparisons across different sites are made, hepatic expression of CYP1A2, a direct target of the AHR, appears elevated in embryos from a site associated with a dioxin point source and previously characterized PCB contamination. Elevated CYP1A2 expression is not persistent, as site-specific variation was absent in juveniles originating from field-collected eggs but reared under lab conditions. Our results illustrate the patterning of AHR gene expression in a long-lived environmental model species, and indicate a potential contemporary influence of historical contamination. This research presents a novel opportunity to link contamination events to critical genetic pathways during embryonic development, and carries significant potential to inform our understanding of potential health effects in wildlife and humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2017.07.065 | DOI Listing |
Cancer Rep (Hoboken)
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.
Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).
Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.
Postgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Brief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!