Varietal thiols are key aroma compounds in wine issued from multiple and complex origins. Several precursor families have been identified in grapes and must and have been widely studied. But a large part of thiol origin still remains unknown. Thus, we only have an incomplete picture of thiol precursors and there is a lack of knowledge on pre-fermentative mechanisms that can impact their levels. Our study focused on the formal identification and the quantification of new varietal thiol precursors in must. First of all, we synthesized natural and labeled standards using an original multi-step strategy, then we developed and validated a UPLC-MS/MS method that allowed us to identify and quantify for the first time a dipeptide S-conjugate to 3MH, the γGluCys-3MH, in Sauvignon B. We observed the S-4-mercapto-4-methylpentan-2-one-l-cysteinyl-glycine (CysGly-4MMP) and S-4-mercapto-4-methylpentan-2-one-N-(l-γ-glutamyl)-l-cysteine (γGluCys-4MMP) but at too low concentration to be quantified.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2017.05.116DOI Listing

Publication Analysis

Top Keywords

identification quantification
8
thiol precursors
8
quantification s-3-hexan-1-ol-γ-glutamyl-cysteine
4
s-3-hexan-1-ol-γ-glutamyl-cysteine grape
4
grape potential
4
thiol
4
potential thiol
4
thiol precursor
4
precursor uplc-ms/ms
4
uplc-ms/ms analysis
4

Similar Publications

Background: Various countries have instituted risk governance measures to control and minimize the risks of chemicals at the national and international levels. Activities typically include risk assessment based on ) hazard and exposure assessments; ) setting limits on the production, use, and emissions of chemicals; ) enforcement of regulations; and ) monitoring the effectiveness of the measures taken. These steps largely depend on chemical analysis and access to pure chemical reference standards.

View Article and Find Full Text PDF

Quantifying Bone Collagen Fingerprint Variation Between Species.

Mol Ecol Resour

January 2025

Manchester Institute of Biotechnology, School of Natural Sciences, University of Manchester, Manchester, UK.

Collagen is the most ubiquitous protein in the animal kingdom and one of the most abundant proteins on Earth. Despite having a relatively repetitive amino acid sequence motif that enables its triple helical structure, in type 1 collagen, that dominates skin and bone, there is enough variation for its increasing use for the biomolecular species identification of animal tissues processed or degraded beyond the amenability of DNA-based analyses. In recent years, this has been most commonly achieved through the technique of collagen peptide mass fingerprinting (PMF) known as ZooMS (Zooarchaeology by Mass Spectrometry), applied to the analysis of tens of thousands of samples across over one hundred studies in the past decade alone.

View Article and Find Full Text PDF

Molecular docking-guided in-depth investigation of the biological activities and phytochemical and mineral profiles of endemic Phlomis capitata.

J Sci Food Agric

January 2025

Bee and Natural Products R&D and P&D Application and Research Center, Bingöl University, Bingöl, Turkey.

Background: Phlomis capitata is an endemic species of flowering aromatic and medicinal plant in the family Lamiaceae, native to regions of the Mediterranean and nearby areas. Understanding the chemical compounds present in P. capitata can reveal potential medicinal properties.

View Article and Find Full Text PDF

Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!