The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2017.07.046 | DOI Listing |
Anal Methods
January 2025
Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
Rapid and accurate methods for tracing and identifying the origin of lamb are crucial for ensuring food authenticity and quality. This study developed a precise traceability method to determine the origin of lamb by integrating rapid evaporative ionization mass spectrometry (REIMS) with multivariate statistical analysis. Lamb samples from Xilin Gol, Ordos, and Hulun Buir ranches were identified by REIMS fingerprinting within 1 min.
View Article and Find Full Text PDFMetabol Open
March 2025
Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa.
Dyslipidemia is a prominent pathological feature responsible for oxidative stress-induced cardiac damage. Due to their high antioxidant content, dietary compounds, such as aspalathin and sulforaphane, are increasingly explored for their cardioprotective effects against lipid-induced toxicity. Cultured H9c2 cardiomyoblasts, an in vitro model routinely used to assess the pharmacological effect of drugs, were pretreated with the dietary compounds, aspalathin (1 μM) and sulforaphane (10 μM) before exposure to palmitic acid (0.
View Article and Find Full Text PDFBiomed Rep
March 2025
Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, Larissa 41500, Greece.
Myelodysplastic syndrome (MDS) is a heterogeneous clonal disorder characterized by insufficient hematopoiesis, peripheral blood cytopenia and an increased risk for malignant transformation to acute myeloid leukemia. Several factors, such as age, sex and lifestyle, promote the development of MDS syndrome. Oxidative stress, along with its detrimental effects, cause hematological disorders; however, its role in the pathogenesis of MDS is unknown.
View Article and Find Full Text PDFFront Genet
January 2025
Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Macrophages are known to support cardiac development and homeostasis, contributing to tissue remodeling and repair in the adult heart. However, it remains unclear whether embryonic macrophages also respond to abnormalities in the developing heart. Previously, we reported that the structural protein Sorbs2 promotes the development of the second heart field, with its deficiency resulting in atrial septal defects (ASD).
View Article and Find Full Text PDFFront Nutr
January 2025
Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
Objective: The study aimed to analyze the safety and effectiveness of the ProBC Plus ( LMG S-31876) supplement across various health parameters, including stress levels, immunoglobulin levels, biochemical parameters, and vital signs.
Methods: A randomized, double-blind, placebo-controlled clinical trial study was conducted involving 50 subjects diagnosed with ailments related to immune system dysfunction and stress related disorders. Patients were treated with ProBC Plus (2 billion colony-forming units [CFU]) along with a placebo capsule administered once daily for a period of 8 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!