Polymer vesicles formed by a pair of oppositely charged diblock copolyelectrolytes (PICsomes) are considered as a good alternative to polymersomes formed by amphiphilic copolymers. Here, we report on inherent stability and in vitro biocompatibility of PICsomes prepared from a pair of oppositely charged zwitterionic-ionic copolymers, in which the ionic block is a strong polyelectrolyte. Our results demonstrated that the PICsomes are highly stable over a wide range of pH and temperatures. Direct microscopic observations revealed that the PICsomes retain their morphology in the presence of human serum. In vitro studies using human skin fibroblasts (HSFs) showed that the polymer vesicles are not cytotoxic and do not affect cell proliferation and adhesion. A model hydrophilic dye was effectively incorporated into the PICsomes by simple mixing. Using confocal microscopy observations, we demonstrated that the dye-loaded PICsomes are efficiently internalized by the cells and are located predominantly in endo/lysosomal compartments. Thus, the PICsomes have promising potential for use as nanocontainers for substances of biomedical interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.07.042DOI Listing

Publication Analysis

Top Keywords

picsomes
8
stability vitro
8
vitro studies
8
polymer vesicles
8
pair oppositely
8
oppositely charged
8
polyion complex
4
complex vesicles
4
vesicles picsomes
4
picsomes strong
4

Similar Publications

Inflammation-Responsive Polyion Complex Vesicles for Autoimmune Disease Therapy via Cell-Free DNA Scavenging and Inflammatory Microenvironment Modulation.

ACS Nano

October 2024

Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.

Cell-free DNA (cfDNA) scavenging represents a promising anti-inflammatory modality for autoimmune disease (AID) treatment. However, it remains challenging for existing systems to achieve inflammation-targeted cfDNA scavenging and the management of cfDNA-unrelated inflammatory pathways. Herein, inflammation-responsive polyion complex vesicles (PICsomes) are developed, bridging inflammation-instructed cfDNA scavenging, and methotrexate (MTX) delivery for AID management.

View Article and Find Full Text PDF

Exogenous enzyme-activated prodrug therapy (EPT) is a potential cancer treatment strategy that delivers non-human enzymes into or on the surface of the cell and subsequently converts a non-toxic prodrug into an active cytotoxic substance at a specific location and time. The development of several pharmacological pairs based on EPT has been the focus of anticancer research for more than three decades. Numerous of these pharmacological pairs have progressed to clinical trials, and a few have achieved application in specific cancer therapies.

View Article and Find Full Text PDF

Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are beneficial to maintaining the chemical integrity and high biological activity of the loaded drugs. However, the stability of PIC nanoparticles can be disrupted in high-ionic-strength solutions because electrostatic interaction is the DRIVING force; these disruptions can thus impair drug delivery.

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) is a major healthcare concern due to its tolerance to antibiotics when enclosed in biofilms. Tobramycin (Tob), an effective cationic aminoglycoside antibiotic against planktonic PA, loses potency within PA biofilms due to hindered diffusion caused by interactions with anionic biofilm components. Loading Tob into nano-carriers can enhance its biofilm efficacy by shielding its charge.

View Article and Find Full Text PDF

Increased Enzyme Loading in PICsomes via Controlling Membrane Permeability Improves Enzyme Prodrug Cancer Therapy Outcome.

Polymers (Basel)

March 2023

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

Mesoscopic-sized polyion complex vesicles (PICsomes) with semi-permeable membranes are promising nanoreactors for enzyme prodrug therapy (EPT), mainly due to their ability to accommodate enzymes in their inner cavity. Increased loading efficacy and retained activity of enzymes in PICsomes are crucial for their practical application. Herein, a novel preparation method for enzyme-loaded PICsomes, the stepwise crosslinking (SWCL) method, was developed to achieve both high feed-to-loading enzyme efficiency and high enzymatic activity under in vivo conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!