In preclinical studies, several tumor cell lines have demonstrated an epithelial-to-mesenchymal (EMT)-dependent enhancement in migration when exposed to ionizing radiation at doses of 10 Gy or higher. The goal of this study was to determine whether a lower dose (2.3 Gy) of radiation enhances breast tumor cell migration, and to elucidate the potential contribution of EMT and pro-migratory secreted factors in radiation-induced tumor cell migration. Three human breast cancer cell lines were irradiated and imaged in real-time over 72 h to quantify changes in single cell migration, chemotactic migration and invasion. EMT markers were assessed and conditioned media from irradiated cells was used to determine whether cellular migration was influenced by secreted factors. We observed that a 2.3 Gy dose of radiation did not induce EMT in epithelial-like MCF-7 cells and did not increase the ability of MCF-7 cells or highly motile MDA-MB-231 LM2-4 cells to migrate. In addition, a 2.3 Gy dose significantly increased MDA-MB-231 migration, as detected by single cell tracking and transwell migration assays, but did not increase invasion of MDA-MB-231 cells through reconstituted basement membrane. Cells from all three cell lines migrated further from their point of origin after irradiation, suggesting the cells may be responding to soluble factors produced by other irradiated cells. Consistently, conditioned media derived from 2.3 Gy irradiated MDA-MB-231 cells contained increased levels of several pro-migratory chemokines, and conditioned media from irradiated cells enhanced the migration of nonirradiated MDA-MB-231 cells. These findings indicate that 2.3 Gy dose of radiation is sufficient to increase migration of MDA-MB-231 cells and to alter the single cell migration behavior of three human breast cancer cell lines. Our data suggest the involvement of soluble factors released by 2.3 Gy irradiated cells, and support further in vitro and in vivo studies to identify potential therapeutic targets to prevent tumor cell migration after irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR14738.1 | DOI Listing |
Cardiovasc Toxicol
January 2025
Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, No. 23, Postal Street, Harbin, 150001, Heilongjiang, PR China.
Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFSci Rep
January 2025
School of Stomatology, Bengbu Medical University, No. 2600 Donghai Road, Bengbu, 233030, China.
Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.
View Article and Find Full Text PDFBr J Cancer
January 2025
Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!