Immunohistochemistry Microarrays.

Anal Chem

Biomedical Engineering Department, ‡McGill University and Genome Quebec Innovation Centre, §Department of Pathology, McGill UniversityHealth Centre, and ∥Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A0G1, Canada.

Published: September 2017

Immunohistochemistry (IHC) on tissue sections is widely used for quantifying the expression patterns of proteins and is part of the standard of care for cancer diagnosis and prognosis, but is limited to staining a single protein per tissue. Tissue microarray and microfluidics staining methods have emerged as powerful high throughput techniques, but they either only permit the analysis of a single protein per slide or require complex instrumentation and expertise while only staining isolated areas. Here, we introduce IHC microarrays (IHCμA) for multiplexed staining of intact tissues with preserved histological and spatial information. Droplets of a dextran solution containing antibodies were prespotted on a slide and snapped onto a preprocessed formalin-fixed, paraffin-embedded (FFPE) tissue section soaked in a polyethylene glycol solution. The antibodies are confined within the dextran droplets and locally stain the tissue below with a contrast similar to the one obtained by conventional IHC. The microarray of antibody droplets can be prespotted on a slide and stored, thus neither the preparation of the antibody solutions nor a sophisticated microarray spotter is needed. Sampling considerations with IHCμA were evaluated by taking three tissues with varying levels of cancer cells. A multiplex IHCμA with 180 spots targeting 8 cancer proteins was performed on a breast cancer tissue section to illustrate the potential of this method. This work opens the avenue of applying microarray technologies for conducting IHC on intact tissue slices and has great potential to be used in the discovery and validation of tissue biomarkers in human tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b00807DOI Listing

Publication Analysis

Top Keywords

tissue
8
single protein
8
solution antibodies
8
prespotted slide
8
immunohistochemistry microarrays
4
microarrays immunohistochemistry
4
ihc
4
immunohistochemistry ihc
4
ihc tissue
4
tissue sections
4

Similar Publications

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.

View Article and Find Full Text PDF

Automated High-Throughput Affinity Capture-Mass Spectrometry Platform with Data-Independent Acquisition.

J Proteome Res

January 2025

Discovery Research, AbbVie, Inc., 1 North Waukegan Rd., North Chicago, Illinois 60064, United States.

Affinity capture (AC) combined with mass spectrometry (MS)-based proteomics is highly utilized throughout the drug discovery pipeline to determine small-molecule target selectivity and engagement. However, the tedious sample preparation steps and time-consuming MS acquisition process have limited its use in a high-throughput format. Here, we report an automated workflow employing biotinylated probes and streptavidin magnetic beads for small-molecule target enrichment in the 96-well plate format, ending with direct sampling from EvoSep Solid Phase Extraction tips for liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis.

View Article and Find Full Text PDF

Cholestasis is a multifactorial hepatobiliary disorder, characterized by obstruction of bile flow and accumulation of bile, which in turn causes damage to liver cells and other tissues. In severe cases, it can result in the development of life-threatening conditions, including cirrhosis and liver cancer. Paeoniflorin (PF) has been demonstrated to possess favourable therapeutic potential for the treatment of cholestasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!