The loading and removal efficiency of 16 US EPA polycyclic aromatic hydrocarbons (PAHs) were examined in an inverted A²/O wastewater treatment plant (WWTP) located in an urban area in China. The total PAH concentrations were 554.3 to 723.2 ng/L in the influent and 189.6 to 262.7 ng/L in the effluent. The removal efficiencies of ∑PAHs in the dissolved phase ranged from 63 to 69%, with the highest observed in naphthalene (80% removal). Concentration and distribution of PAHs revealed that the higher molecular weight PAHs became more concentrated with treatment in both the dissolved phase and the dewatered sludge. The sharpest reduction was observed during the pretreatment and the biological phase. Noncarcinogenic risk, carcinogenic risk, and total health risk of PAHs found in the effluent and sewage sludge were also assessed. The effluent BaP toxic equivalent quantities () were above, or far above, standards in countries. The potential toxicities of PAHs in sewage effluent were approximately 10 to 15 times higher than the acceptable risk level in China. The health risk associated with the sewage sludge also exceeded international recommended levels and was mainly contributed from seven carcinogenic PAHs. Given that WWTP effluent is a major PAH contributor to surface water bodies in China and better reduction efficiencies are achievable, the present study highlights the possibility of utilizing WWTPs for restoring water quality in riverine and coastal regions heavily impacted by PAHs contamination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5580565 | PMC |
http://dx.doi.org/10.3390/ijerph14080861 | DOI Listing |
Langmuir
January 2025
College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China.
With the rapid development of electroless nickel (Ni) plating industry, a large amount of Ni complex wastewater is inevitably produced, which is a serious threat to the ecological environment. Herein, a novel Mn-N codoped active carbon (Mn-N@AC) catalyst with high catalytic ozonation ability was synthesized by the impregnation precipitation method and was characterized by BET, XRD, Raman, SEM, FTIR, and TPR. Meanwhile, Mn-N@AC showed excellent catalytic ozonation ability, stability, and applicability.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China; Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China. Electronic address:
Improving the adsorption capacity of materials for pollutants by means of modification is an important direction in the research of water treatment technology. To improve the applicability of sodium alginate composites in the field of adsorption, magnetic sodium alginate-based hydrogel microsphere adsorbent material FeO@SA/PEI-Fe (FSPF) was synthesized in a single step by using polyethyleneimine grafting modification of sodium alginate by sol-gel method. The material was used for the removal of direct blue GL (DB 200) and direct date red B (DR 13) from simulated wastewater, as well as Cu(II) and Pb(II) from simulated wastewater with heavy metal ions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran. Electronic address:
Cefixime (CFX) is a potent antibiotic against gram-positive and gram-negative bacteria that resists degradation and typical removal procedures. This research aimed to synthesize a modified AgCuFeO@GO nanoparticle electrode with anchored MnO for removing CFX by three-dimensional electrochemical oxidation. The physical and chemical characteristics of the nanocomposite were evaluated using various techniques, including FESEM, XRD, EDS-mapping, FTIR, BET, VSM, and TGA.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, PR China.
Photothermal superhydrophobic treatment is an effective anti-icing and de-icing method, avoiding damage to equipment caused by ice accumulation in winter. However, the traditional photothermal materials were expensive and the photothermal conversion coatings are hard to remove when unnecessary. Herein, three biochar microspheres with solid, hollow, and flower-like structures (SBMs, HBMs, FBMs) were fabricated to construct photothermal superhydrophobic coatings on the polyester fabric (PET), respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!