We propose a decoherence protected protocol for sending single photon quantum states through depolarizing channels. This protocol is implemented via an approximate quantum adder engineered through spontaneous parametric down converters, and shows higher success probability than distilled quantum teleportation protocols for distances below a threshold depending on the properties of the channel.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537370 | PMC |
http://dx.doi.org/10.1038/s41598-017-06425-3 | DOI Listing |
Materials (Basel)
January 2025
Nanoscience and Nanoengineering Programme, İstanbul Technical University, Maslak Campus, İstanbul 34469, Turkey.
We propose a temperature-dependent optimization procedure for the second-nearest neighbor (2NN) * tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN * TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN * TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Quantum ICT Research Institute, Tamagawa University, Tokyo 194-8610, Japan.
The limitations of cloning and discriminating quantum states are related to the non-orthogonality of the states. Hence, understanding the collective features of quantum states is essential for the future development of quantum communications technology. This paper investigates the non-orthogonality of different coherent-state signal constellations used in quantum communications, namely phase-shift keying (PSK), quadrature-amplitude modulation (QAM), and a newly defined signal named the sunflower-like (SUN) coherent-state signal.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.
With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea.
Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ) on Ag(100). Surprisingly, μ-O cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!