Respiratory syncytial virus is a major cause of acute lower respiratory tract infection in young children, immunocompromised adults, and the elderly. Intervention with small-molecule antivirals specific for respiratory syncytial virus presents an important therapeutic opportunity, but no such compounds are approved today. Here we report the structure of JNJ-53718678 bound to respiratory syncytial virus fusion (F) protein in its prefusion conformation, and we show that the potent nanomolar activity of JNJ-53718678, as well as the preliminary structure-activity relationship and the pharmaceutical optimization strategy of the series, are consistent with the binding mode of JNJ-53718678 and other respiratory syncytial virus fusion inhibitors. Oral treatment of neonatal lambs with JNJ-53718678, or with an equally active close analog, efficiently inhibits established acute lower respiratory tract infection in the animals, even when treatment is delayed until external signs of respiratory syncytial virus illness have become visible. Together, these data suggest that JNJ-53718678 is a promising candidate for further development as a potential therapeutic in patients at risk to develop respiratory syncytial virus acute lower respiratory tract infection.Respiratory syncytial virus causes lung infections in children, immunocompromised adults, and in the elderly. Here the authors show that a chemical inhibitor to a viral fusion protein is effective in reducing viral titre and ameliorating infection in rodents and neonatal lambs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537225 | PMC |
http://dx.doi.org/10.1038/s41467-017-00170-x | DOI Listing |
Viral Immunol
January 2025
Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico.
Respiratory syncytial virus (RSV) is one of the most important etiologies of acute respiratory infections that cause bronchiolitis in children under 5 years of age. Treatments are expensive, no vaccine is available, and this is an important cause of hospitalization. Costimulatory molecules have been reported to be good inducers of antiviral type 1 immune response.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Munich, Technical University of Munich, Munich, Germany.
Background: Patients with congenital heart defects (CHDs) are at higher risk for infectious diseases. This may partly be due to frequent hospital stays and the associated exposure to pathogens. This study aims to provide a comprehensive overview of immunisation coverage among twins in which at least one twin has CHD.
View Article and Find Full Text PDFNat Med
January 2025
Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA.
Respiratory syncytial virus (RSV) causes a substantial health burden among infants and older adults. Prefusion F protein-based vaccines have shown high efficacy against RSV disease in clinical trials, offering promise for mitigating this burden through maternal and older adult immunization. Employing an individual-based model, we evaluated the impact of RSV vaccination on hospitalizations and deaths in 13 high-income countries, assuming that the vaccine does not prevent infection or transmission.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Am J Perinatol
January 2025
Pediatrics, Dalhousie University, Halifax, Canada.
Background: From 2002 to 2023, palivizumab was the only intervention to reduce RSV-associated hospitalizations in high-risk infants in Canada, but advances in RSV prevention are drastically changing this landscape. Eligibility criteria for this monoclonal antibody for preterm infants varied over time across each of 10 Canadian provinces and 3 territories. The national professional pediatric association (Canadian Paediatric Society) revised its eligibility recommendations in 2015, removing access for preterm infants 30 to 32 weeks gestation (WG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!