p97/VCP, a member of the AAA+ (ATPases associated with diverse cellular activities) family of proteins, is implicated in the etiology of a group of degenerative diseases affecting bone and muscle tissue as well as the central nervous system. Methyl-TROSY-based NMR studies have previously revealed how disease-causing mutations deregulate a subtle dynamic conformational equilibrium involving the N-terminal domain (NTD) with implications for the binding of certain adaptors, providing insight into how disease mutations lead to abnormal function. Herein the conformational plasticity of the p97 system is explored in an attempt to identify hotspots that can serve as targets for restoring function in disease mutants by shifting the position of the NTD back to its wild-type location. Although p97 is overall robust with respect to extensive mutagenesis throughout the protein involving conservative substitutions of hydrophobic residues, key positions have been identified that alter the NTD equilibrium; these lie in specific regions that localize to the interface between the NTD and the D1 nucleotide-binding domain of the complex. Notably, for a severe disease mutant involving an R155C substitution the NTD equilibrium can be shifted back to its wild-type position by mutation at a secondary site with restoration of wild-type two-pronged binding of the UBXD1 adaptor protein that is impaired in disease; this underlies the potential for recovering function by targeting p97 disease mutants with drug molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565461 | PMC |
http://dx.doi.org/10.1073/pnas.1707974114 | DOI Listing |
BMC Biol
January 2025
Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany.
Background: C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms.
Results: In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP.
While novel deep learning and statistics-based techniques predict accurate structural models for proteins and non-coding RNA, describing their macromolecular conformations in solution is still challenging. Small-angle X-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the structures often lack cations necessary for stability and charge neutralization, and a single structure inadequately represents the conformational plasticity of RNA.
View Article and Find Full Text PDFEMBO J
January 2025
Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.
Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated.
View Article and Find Full Text PDFBiophys Rep (N Y)
January 2025
Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343; Department of Chemistry, Syracuse University, Syracuse, 13244.
Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Darmstadt University of Technology: Technische Universitat Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, 64287, Darmstadt, GERMANY.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!