Inactivation of Nitric Oxide Synthesis Exacerbates the Development of Alzheimer Disease Pathology in APPPS1 Mice (Amyloid Precursor Protein/Presenilin-1).

Hypertension

From the Institut des Vaisseaux et du Sang, Paris, France (M.P., A.N., T.M.-R., B.I.L.); INSERM U965, Paris, France (D.C., P.B., N.K., T.M.-R.); Université Paris Diderot, Sorbonne Paris Cité, France (P.B., N.K., B.I.L.); AP-HP, Hôpital Lariboisière, Paris, France (P.B., N.K.); and INSERM, U970, Paris, France (B.I.L.).

Published: September 2017

AI Article Synopsis

  • The study investigates the relationship between hypertension and Alzheimer’s disease using APPPS1 mouse models.
  • Nitric oxide deficiency, especially when combined with hypertension, leads to increased amyloid burden and cognitive decline in these mice.
  • Blood pressure normalization does not fully mitigate the negative effects of hypertension on Alzheimer pathology, indicating that nitric oxide plays a crucial role in this relationship.

Article Abstract

The epidemiological link between hypertension and Alzheimer disease is established. We previously reported that hypertension aggravates the Alzheimer-like pathology in APPPS1 mice (amyloid precursor protein/presenilin-1, mouse model of Alzheimer disease) with angiotensin II-induced hypertension, in relation with hypertension and nitric oxide deficiency. To provide further insights into the role of nitric oxide in the hypertension-Alzheimer disease cross-talk, we studied the effects of nitric oxide blockade in APPPS1 mice using N(ω)-nitro-l-arginine methyl ester (l-NAME) alone or in combination with hydralazine, to normalize blood pressure. Compared with normotensive APPPS1 mice, those with l-NAME-induced hypertension had greater amyloid burden ( P<0.05), increased cortical amyloid angiopathy ( P<0.01), decreased regional microvascular density ( P<0.05), and deficient long-term spatial reference memory ( P<0.001). Blood pressure normalization with hydralazine did not protect APPPS1 mice from l-NAME-induced deterioration except for cortical amyloid angiopathy, linked to hypertension-induced arterial wall remodeling. By testing the cerebrovascular response to hypercapnic breathing, we evidenced early functional impairment of cerebral vasomotor activity in APPPS1 mice. Whereas in control wild-type normotensive mice, carbon dioxide breathing resulted in 15±1.3% increase in the mean blood flow velocity ( P<0.001), paradoxical mild decrease (1.5±0.4%) was recorded in normotensive APPPS1 mice ( P<0.001). Carbon dioxide-induced decrease in mean blood flow velocity was not significantly modified in l-NAME-treated hypertensive APPPS1 mice (2.5±1.2%) and partly reversed to mild vasodilation by hydralazine (3.2±1.5%, P<0.01). These results suggest that impaired nitric oxide bioavailability exacerbates the pathophysiology of Alzheimer disease, essentially impacting amyloid load and cognitive impairment, independently of l-NAME-induced hypertension. Only cerebral amyloid angiopathy seems to be dependent on hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09742DOI Listing

Publication Analysis

Top Keywords

nitric oxide
16
appps1 mice
16
alzheimer disease
12
pathology appps1
8
mice amyloid
8
amyloid precursor
8
precursor protein/presenilin-1
8
hypertension
5
inactivation nitric
4
oxide
4

Similar Publications

Study Question: Is elevated plasma molybdenum level associated with increased risk for idiopathic premature ovarian insufficiency (POI)?

Summary Answer: Elevated plasma molybdenum level is associated with an increased risk of idiopathic POI through vascular endothelial injury and inhibition of granulosa cell proliferation.

What Is Known Already: Excessive molybdenum exposure has been associated with ovarian oxidative stress in animals but its role in the development of POI remains unknown.

Study Design, Size, Duration: Case-control study of 30 women with idiopathic POI and 31 controls enrolled from August 2018 to May 2019.

View Article and Find Full Text PDF

Five pregnane C21-steroids, including three 5,6-epoxy steroids (1-3) and two 8,14-seco-steroids (4 and 5), were isolated from the acid hydrolysate of Cynanchum bungei roots. Cynbungenins L-O (1-4) are previously undescribed compounds. Compound 3 with a 5a,6a-epoxy group represents the first example found in the Cynanchum plants.

View Article and Find Full Text PDF

Introduction And Objectives: The fractional exhaled fraction of nitric oxide (FeNO) is used in clinical practice for asthma diagnosis, phenotyping, and therapeutic management. Therefore, accurate thresholds are crucial. The normal FeNO values over lifespan in a respiratory healthy population and the factors related to them remain unclear.

View Article and Find Full Text PDF

Glucuronoxylomannan (GXM) modulates macrophage proliferation and apoptosis through the STAT1 signaling pathway.

Cell Biol Int

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Center for Plastic & Reconstructive Surgery, Hangzhou, China.

cryptococcus neoformans (C. neoformans) is a crucial opportunistic fungus that possesses an encapsulated fungal pathogen. The cryptococcal capsule is mainly composed of the polysaccharide glucuronoxylomannan (GXM).

View Article and Find Full Text PDF

The growing burden of metabolic disorders manifested by hypertension, type 2 diabetes mellitus, hyperlipidemia, obesity and non-alcoholic fatty liver disease presents a significant global health challenge by contributing to cardiovascular diseases and high mortality rates. Β-blockers are among the most widely used drugs in the treatment of hypertension and acute cardiovascular events. In addition to blocking the receptor sites for catecholamines, third-generation β-blockers with associated vasodilating properties, such as carvedilol and nebivolol, provide a broad spectrum of metabolic effects, including anti-inflammatory and antioxidant properties and a favorable impact on glucose and lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!