J Bacteriol
Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
Published: October 2017
Most integral outer membrane proteins (OMPs) of Gram-negative bacteria, such as , assume a β-barrel structure. The β-barrel assembly machine (Bam), a five-member complex composed of β-barrel OMP BamA and four associated lipoproteins, BamB, BamC, BamD, and BamE, folds and inserts OMPs into the outer membrane. The two essential proteins BamA and BamD interact to stabilize two subcomplexes, BamAB and BamCDE, and genetic and structural evidence suggests that interactions between BamA and BamD occur via an electrostatic interaction between a conserved aspartate residue in a periplasmic domain of BamA and a conserved arginine in BamD. In this work, we characterize charge-change mutations at these key BamA and BamD residues and nearby charged residues in BamA with respect to OMP assembly and Bam complex stability. We show that Bam complex stability does not correlate with function, that BamA and BamD must adopt at least two active conformational states during OMP assembly, and that these charged residues are not required for function. Rather, these charged residues are important for coordinating the activities of BamA and BamD to allow efficient OMP assembly. We present a model of OMP assembly wherein recognition and binding of unfolded OMP substrate by BamA and BamD induce a signaling interaction between the two proteins, causing conformational changes necessary for the assembly reaction to proceed. By analogy to signal sequence recognition by SecYEG, we believe these BamA-BamD interactions ensure that both substrate and complex are competent for OMP assembly before the assembly reaction commences. Conformational changes in the proteins of the β-barrel assembly machine (Bam complex) are associated with the folding and assembly of outer membrane proteins (OMPs) in Gram-negative bacteria. We show that electrostatic interactions between the two essential proteins BamA and BamD coordinate conformational changes upon binding of unfolded substrate that allow the assembly reaction to proceed. Mutations affecting this interaction are lethal not because they destabilize the Bam complex but rather because they disrupt this coordination. Our model of BamA-BamD interactions regulating conformation in response to proper substrate interaction is reminiscent of conformational changes the secretory (Sec) machinery undergoes after signal sequence recognition that ensure protein quality control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5637172 | PMC |
http://dx.doi.org/10.1128/JB.00373-17 | DOI Listing |
Cells
November 2024
University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, 48149 Münster, Germany.
The β-barrel assembly machinery (BAM) is a multimeric protein complex responsible for the folding of outer membrane proteins in gram-negative bacteria. It is essential for cell survival and outer membrane integrity. Therefore, it is of impact in the context of antibiotic resistance and can serve as a target for the development of new antibiotics.
View Article and Find Full Text PDFJ Biol Chem
June 2024
Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; School of Medicine, Linyi University, Linyi, China. Electronic address:
The biogenesis of outer membrane proteins is mediated by the β-barrel assembly machinery (BAM), which is a heteropentomeric complex composed of five proteins named BamA-E in Escherichia coli. Despite great progress in the BAM structural analysis, the molecular details of BAM-mediated processes as well as the exact function of each BAM component during OMP assembly are still not fully understood. To enable a distinguishment of the function of each BAM component, it is the aim of the present work to examine and identify the effective minimum form of the E.
View Article and Find Full Text PDFNat Commun
September 2023
Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA.
The outer membrane (OM) of Gram-negative bacteria such as Escherichia coli is an asymmetric bilayer with the glycolipid lipopolysaccharide (LPS) in the outer leaflet and glycerophospholipids in the inner. Nearly all integral OM proteins (OMPs) have a characteristic β-barrel fold and are assembled in the OM by the BAM complex, which contains one essential β-barrel protein (BamA), one essential lipoprotein (BamD), and three non-essential lipoproteins (BamBCE). A gain-of-function mutation in bamA enables survival in the absence of BamD, showing that the essential function of this protein is regulatory.
View Article and Find Full Text PDFMol Microbiol
September 2023
Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA.
The β-barrel assembly machinery (Bam) complex facilitates the assembly of outer membrane proteins (OMPs) in gram-negative bacteria. The Bam complex is conserved and essential for bacterial viability and consists of five subunits, BamA-E. BamA is the transmembrane component, and its β-barrel domain opens laterally to allow folding and insertion of incoming OMPs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2023
State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100005, Beijing, China; School of Medicine, Linyi University, 276005, Linyi, China. Electronic address:
Antimicrobial resistance (AMR) crisis urges the development of new antibiotics. In the present work, we for the first time used bio-affinity ultrafiltration combined with HPLC-MS (UF-HPLC-MS) to examine the interaction between the outer membrane β-barrel proteins and natural products. Our results showed that natural product licochalcone A from licorice interacts with BamA and BamD with the enrichment factor of 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.