The budding yeast stores iron in the vacuole, which is a major resistance mechanism against iron toxicity. One key protein involved in vacuolar iron storage is the iron importer Ccc1, which facilitates iron entry into the vacuole. Transcription of the gene is largely regulated by the binding of iron-sulfur clusters to the activator domain of the transcriptional activator Yap5. Additional evidence, however, suggests that Yap5-independent transcriptional activation of also contributes to iron resistance. Here, we demonstrate that components of the signaling pathway involving the low-glucose sensor Snf1 regulate transcription and iron resistance. We found that deletion acts synergistically with deletion to regulate transcription and iron resistance. A kinase-dead mutation of Snf1 lowered iron resistance as did deletion of , which encodes a partner protein of Snf1. Deletion of all three alternative partners of Snf1 encoded by , , and decreased both transcription and iron resistance. The Snf1 complex is known to activate the general stress transcription factors Msn2 and Msn4. We show that Msn2 and Msn4 contribute to Snf1-mediated transcription. Of note, deletion in combination with and deletion resulted in additive effects on transcription, suggesting that other activators contribute to the regulation of transcription. In conclusion, we show that yeast have developed multiple transcriptional mechanisms to regulate Ccc1 expression and to protect against high cytosolic iron toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602413 | PMC |
http://dx.doi.org/10.1074/jbc.M117.802504 | DOI Listing |
Int J Cardiol Heart Vasc
February 2025
Department of Geriatrics, Peking University Third Hospital, Beijing 100191, PR China.
Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China. Electronic address:
One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33,000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
Electrochemical water splitting is a promising method for the generation of "green hydrogen", a renewable and sustainable energy source. However, the complex, multistep synthesis processes, often involving hazardous or expensive chemicals, limit its broader adoption. Herein, a nitrate (NO) anion-intercalated nickel-iron-cerium mixed-metal (oxy)hydroxide heterostructure electrocatalyst is fabricated on nickel foam (NiFeCeOH@NF) via a simple electrodeposition method followed by cyclic voltammetry activation to enhance its surface properties.
View Article and Find Full Text PDFEnviron Res
January 2025
Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:
Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-CN)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!