The NADPH oxidase of myeloid cells, NOX2, generates reactive oxygen species (ROS) to eliminate pathogens and malignant cells. NOX2-derived ROS have also been proposed to dampen functions of natural killer (NK) cells and other antineoplastic lymphocytes in the microenvironment of established tumors. The mechanisms by which NOX2 and ROS influence the process of distant metastasis have only been partially explored. Here, we utilized genetically NOX2-deficient mice and pharmacologic inhibition of NOX2 to elucidate the role of NOX2 for the hematogenous metastasis of melanoma cells. After intravenous inoculation of B16F1 or B16F10 cells, lung metastasis formation was reduced in B6.129S6- (-KO) versus -sufficient wild-type (WT) mice. Systemic treatment with the NOX2-inhibitor histamine dihydrochloride (HDC) reduced melanoma metastasis and enhanced the infiltration of IFNγ-producing NK cells into lungs of WT but not of -KO mice. IFNγ-deficient B6.129S7- /J mice were prone to develop melanoma metastases and did not respond to treatment with HDC. We propose that NOX2-derived ROS facilitate metastasis of melanoma cells by downmodulating NK-cell function and that inhibition of NOX2 may restore IFNγ-dependent, NK cell-mediated clearance of melanoma cells. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-16-0382DOI Listing

Publication Analysis

Top Keywords

melanoma cells
12
reactive oxygen
8
oxygen species
8
melanoma metastasis
8
cells
8
nox2-derived ros
8
inhibition nox2
8
metastasis melanoma
8
melanoma
6
metastasis
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!