The objective of this study was to investigate the molecular mechanisms explaining the multidrug-resistant (MDR) phenotype found in a novel clinical Shewanella sp. strain (Shew256) recovered from a diabetic patient. Whole-genome shotgun sequencing was performed using Illumina MiSeq-I and Nextera XT DNA library. De novo assembly was performed with SPAdes. RAST Server was used to predict the open-reading frames and the predictions were confirmed using BLAST. Further genomic analysis was carried out using average nucleotide identity (ANI), ACT (Artemis), OrthoMCL, ARG-ANNOT, ISfinder, PHAST, tRNAscan-SE, plasmidSPAdes, PlasmidFinder and MAUVE. PCR and plasmid extraction were also performed. Genomic analysis revealed a total of 456 predicted genes unique to Shew256 compared with other Shewanella genomes. Moreover, the presence of different resistance genes, including bla, was found. A complex class 1 integron containing the ISCR1 gene, disrupted by two putative transposase genes, was identified. Furthermore, other resistance genes, a transposon containing aph(3'), insertion sequences, phages and non-coding RNAs were also found. In conclusion, evidence of acquisition of resistance genes and mobile elements that could explain the MDR phenotype were observed. This Shewanella sp. represents a prime example of how antibiotic resistance determinants can be acquired by uncommon pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2017.06.005DOI Listing

Publication Analysis

Top Keywords

resistance genes
12
shewanella strain
8
antibiotic resistance
8
resistance determinants
8
mdr phenotype
8
genomic analysis
8
resistance
5
genes
5
genetic analysis
4
analysis per-2-producing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!