Gap junction (GJ) channels form low resistance passages between cardiomyocytes and play a role in the rapid propagation of action potentials in the heart. A GJ channel is formed by two properly docked hemichannels and each hemichannel is a hexamer of connexins. Connexin40 (Cx40) and Cx43 are the dominant connexins in atrial myocytes, while Cx45 is mostly expressed in the sinoatrial (SA) and atrioventricular (AV) nodes which directly connect nodal cells with atrial myocytes, possibly via heterotypic Cx40/Cx45 and/or Cx43/Cx45 GJs. However, the functional status and channel properties of human heterotypic Cx40/Cx45 or Cx43/Cx45 GJs have not been studied. Here we investigated human Cx40/Cx45 and Cx43/Cx45 heterotypic GJs by recombinant expression in GJ deficient cells. Unlike the finding on rodent connexins, cell pairs expressing human Cx40 in one and Cx45 in the other failed to form morphological and functional GJs. Modifications in human Cx40 with designed variants (D55N or P193Q, but not P193K) are sufficient to establish morphological and functional heterotypic GJs with Cx45. In contrast, heterotypic human Cx43/Cx45 GJs are functional similar to that described for rodent Cx43/Cx45 GJs. Detailed kinetic characterizations of human heterotypic Cx43/Cx45 GJs revealed a rapid asymmetric V-gating and a much slower recovery, which could reduce the GJ conductance in a junctional delay, action potential frequency, and direction dependent manner. Dynamic uncoupling in Cx45-containing GJs might contribute to a slower action potential propagation in the AV node.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yjmcc.2017.07.117 | DOI Listing |
Sci Rep
September 2023
Department of Physics and Astronomy, Ghent University, Ghent, Belgium.
Gap junctions (GJs) formed of connexin (Cx) protein are the main conduits of electrical signals in the heart. Studies indicate that the transitional zone of the atrioventricular (AV) node contains heterotypic Cx43/Cx45 GJ channels which are highly sensitive to transjunctional voltage (V). To investigate the putative role of V gating of Cx43/Cx45 channels, we performed electrophysiological recordings in cell cultures and developed a novel mathematical/computational model which, for the first time, combines GJ channel V gating with a model of membrane excitability to simulate a spread of electrical pulses in 2D.
View Article and Find Full Text PDFJ Mol Cell Cardiol
October 2017
Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada. Electronic address:
Gap junction (GJ) channels form low resistance passages between cardiomyocytes and play a role in the rapid propagation of action potentials in the heart. A GJ channel is formed by two properly docked hemichannels and each hemichannel is a hexamer of connexins. Connexin40 (Cx40) and Cx43 are the dominant connexins in atrial myocytes, while Cx45 is mostly expressed in the sinoatrial (SA) and atrioventricular (AV) nodes which directly connect nodal cells with atrial myocytes, possibly via heterotypic Cx40/Cx45 and/or Cx43/Cx45 GJs.
View Article and Find Full Text PDFJ Neurosci
March 2013
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2012
Dominick P.Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
Gap junction (GJ) channels assembled from connexin (Cx) proteins provide a structural basis for direct electrical and metabolic cell-cell communication. Here, we focus on gating and permeability properties of Cx43/Cx45 heterotypic GJs exhibiting asymmetries of both voltage-gating and transjunctional flux (J(j)) of fluorescent dyes depending on transjunctional voltage (V(j)). Relatively small differences in the resting potential of communicating cells can substantially reduce or enhance this flux at relative negativity or positivity on Cx45 side, respectively.
View Article and Find Full Text PDFJ Physiol
July 2011
Lithuanian University of Health Sciences, Institute of Cardiology, 17 Sukilėliųu Avenue, Kaunas 50009, Lithuania.
Gap junction (GJ) channels formed from connexin (Cx) proteins provide a direct pathway for electrical and metabolic cell–cell communication exhibiting high sensitivity to intracellular pH (pH(i)). We examined pH(i)-dependent modulation of junctional conductance (g(j)) of GJs formed of Cx26, mCx30.2, Cx36, Cx40, Cx43, Cx45, Cx46, Cx47 and Cx50 by reagents representing several distinct groups of uncouplers, such as long carbon chain alkanols (LCCAs), arachidonic acid, carbenoxolone, isoflurane, flufenamic acid and mefloquine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!