Plant metal tolerance proteins (MTPs) play important roles in heavy metal homeostasis; however, related information in citrus plants is limited. Citrus genome sequencing and assembly have enabled us to perform a systematic analysis of the MTP gene family. We identified 12 MTP genes in sweet orange, which we have named as CitMTP1 and CitMTP3 to CitMTP12 based on their sequence similarity to Arabidopsis thaliana MTPs. The CitMTPs were predicted to encode proteins of 864 to 2556 amino acids in length that included 4 to 6 putative transmembrane domains (TMDs). Furthermore, all the CitMTPs contained a highly conserved signature sequence encompassing the TMD-II and the start of the TMD-III. Phylogenetic analysis further classified the CitMTPs into Fe/Zn-MTP, Mn-MTP, and Zn-MTP subgroups, which coincided with the MTPs of A. thaliana and rice. The closely clustered CitMTPs shared a similar gene structure. Expression analysis indicated that most CitMTP transcripts were upregulated to various extents under heavy metal stress. Among these, CitMTP5 in the roots and CitMTP11 in the leaves during Zn stress, CitMTP8 in the roots and CitMTP8.1 in the leaves during Mn stress, CitMTP12 in the roots and CitMTP1 in the leaves during Cu stress, and CitMTP11 in the roots and CitMTP1 in the leaves during Cd stress showed the highest extent of upregulation. These findings are suggestive of their individual roles in heavy metal detoxification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2017.07.072DOI Listing

Publication Analysis

Top Keywords

leaves stress
16
heavy metal
12
sweet orange
8
metal tolerance
8
tolerance proteins
8
roles heavy
8
roots citmtp1
8
citmtp1 leaves
8
metal
5
stress
5

Similar Publications

A common assumption of plant hydraulic physiology is that high hydraulic efficiency must come at the cost of hydraulic safety, generating a trade-off that raises doubts about the possibility of selecting both productive and drought-tolerant herbaceous crops. Wetland plants typically display high productivity, which requires high hydraulic efficiency to sustain transpiration rates coupled to CO uptake. Previous studies have suggested high vulnerability to xylem embolism of different wetland plants, in line with expected trade-offs.

View Article and Find Full Text PDF

Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant.

Ecotoxicol Environ Saf

December 2024

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China. Electronic address:

The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification.

View Article and Find Full Text PDF

High-quality aromatic rice (HAR) is most sensitive to low-temperature stress at the booting stage (LTB), and LTB leads to quality reduction. The key enzymes involved in nitrogen and carbon metabolism significantly affect the synthesis of proteins and starch, thereby influencing the nutritional and taste quality of rice. However, to date, no studies have focused on the after-effects of low-temperature at booting on the quality formation of HAR.

View Article and Find Full Text PDF

The Xanthomonas fragariae effector XopK suppresses stomatal immunity by perturbing abscisic acid accumulation and ABA-transciptional responses in strawberry.

Plant Physiol Biochem

December 2024

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China. Electronic address:

Xanthomonas fragariae (Xaf) is the cause of strawberry crown dry cavity rot and strawberry leaf angular spots. Despite having a long evolutionary history with strawberries, the plant-pathogen interaction is poorly understood. Pathogenicity for most plant pathogens is mostly dependent on the type-III secretion system, which introduces virulence type III effectors (T3Es) into eukaryotic host cells.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is a crucial factor that poses a significant threat to human health. DILI process leads to the changes of reactive oxygen species and reactive nitrogen species content in cells, which leads to oxidative and nitrosative stress in cells. However, the high reactivity of hypochlorous acid (HOCl) and peroxynitrite (ONOO⁻), combined with a lack of in situ imaging techniques, has hindered a detailed understanding of their roles in DILI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!