Ochratoxin A (OTA) is a secondary metabolite produced by fungi of Aspergillus and Penicillium genra. OTA is mainly nephrotoxic but can also cause hepatotoxicity, mutagenicity, teratogenicity, neurotoxicity and immunotoxicity. As recent studies have highlighted the close relationship between gastrointestinal tract and kidney, as principal organs involved in absorption and respective excretion of xenobiotics, the aim of the present study was to analyze the effect of a subchronic exposure (30 days) to 0.05 mg/kg OTA on immune response and oxidative stress parameters at the level of intestine and kidney of young swine. The experiment was realised on twelve crossbred weaned piglets randomly allotted to both control group or toxin group fed 0.050 mg OTA/kg feed. Our results have shown that a subchronic intoxication with a low dose of OTA for 30 days affected the immune response and the anti-oxidant self-defense at gut and kidney level. The gene expression of both markers of signaling pathways involved in inflammation and inflammatory cytokines were affected in a much higher extent in the gut than in the kidney Of OTA intoxicated piglets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yrtph.2017.07.031 | DOI Listing |
Foods
December 2024
School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China.
This comprehensive review explores the biological functions of seed proteins and peptides, highlighting their significant potential for health and therapeutic applications. This review delves into the mechanisms through which perilla peptides combat oxidative stress and protect cells from oxidative damage, encompassing free radical scavenging, metal chelating, in vivo antioxidant, and cytoprotective activities. Perilla peptides exhibit robust anti-aging properties by activating the Nrf2 pathway, enhancing cellular antioxidant capacity, and supporting skin health through the promotion of keratinocyte growth, maintenance of collagen integrity, and reduction in senescent cells.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China. Electronic address:
Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan'xi, China.
Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Metagenotyping of metagenomic data has recently attracted increasing attention as it resolves intraspecies diversity by identifying single nucleotide variants. Furthermore, gene copy number analysis within species provides a deeper understanding of metabolic functions in microbial communities. However, a platform for examining metagenotyping results based on relevant grouping data is lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!