The E693Δ (Osaka) mutation in APP is linked to familial Alzheimer's disease. While this mutation accelerates amyloid β (Aβ) oligomerization, only patient homozygotes suffer from dementia, implying that this mutation is recessive and causes loss-of-function of amyloid precursor protein (APP). To investigate the recessive trait, we generated a new mouse model by knocking-in the Osaka mutation into endogenous mouse APP. The produced homozygous, heterozygous, and non-knockin littermates were compared for memory, neuropathology, and synaptic plasticity. Homozygotes showed memory impairment at 4 months, whereas heterozygotes did not, even at 8 months. Immunohistochemical and biochemical analyses revealed that only homozygotes displayed intraneuronal accumulation of Aβ oligomers at 8 months, followed by abnormal tau phosphorylation, synapse loss, glial activation, and neuron loss. These pathologies were not observed at younger ages, suggesting that a certain mechanism other than Aβ accumulation underlies the memory disturbance at 4 months. For the electrophysiology studies at 4 months, high-frequency stimulation evoked long-term potentiation in all mice in the presence of picrotoxin, but in the absence of picrotoxin, such potentiation was observed only in homozygotes, suggesting their GABAergic deficit. In support of this, the levels of GABA-related proteins and the number of dentate GABAergic interneurons were decreased in 4-month-old homozygotes. Since APP has been shown to play a role in dentate GABAergic synapse formation, the observed GABAergic depletion is likely associated with an impairment of the APP function presumably caused by the Osaka mutation. Oral administration of diazepam to homozygotes from 6 months improved memory at 8 months, and furthermore, prevented Aβ oligomer accumulation, indicating that GABAergic deficiency is a cause of memory impairment and also a driving force of Aβ accumulation. Our findings suggest that the Osaka mutation causes loss of APP function, leading to GABAergic depletion and memory disorder when wild-type APP is absent, providing a mechanism of the recessive heredity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537936PMC
http://dx.doi.org/10.1186/s40478-017-0461-5DOI Listing

Publication Analysis

Top Keywords

osaka mutation
16
app function
12
gabaergic depletion
12
app
8
loss app
8
familial alzheimer's
8
alzheimer's disease
8
memory impairment
8
aβ accumulation
8
dentate gabaergic
8

Similar Publications

The impact of clinical stage on the effectiveness of osimertinib for epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer (NSCLC) remains unexamined. We investigated osimertinib therapeutic efficacy variation between stage IVA or lower and stage IVB EGFR mutation-positive lung cancers, focusing on differences in pretreatment co-occurring genetic alterations in circulating tumor DNA. This was a secondary analysis of the ELUCIDATOR study, a multicenter prospective observational study in Japan that assessed the mechanisms underlying resistance to osimertinib as a first-line treatment for advanced NSCLC with EGFR mutations.

View Article and Find Full Text PDF

Formation of I+III supercomplex rescues respiratory chain defects.

Cell Metab

January 2025

Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore. Electronic address:

Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I+III, resolved at 3.

View Article and Find Full Text PDF

Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.

Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.

View Article and Find Full Text PDF

The "a" determinant, a highly conformational region within the hepatitis B virus large surface protein (LHBs), is crucial for antibody neutralization and diagnostic assays. Mutations in this area can lead to conformational changes, resulting in vaccination failure, diagnostic evasion, and disease progression. The "a" determinant of LHBs contains a conserved N-linked glycosylation site at N320, but the mechanisms of glycosylation in LHBs remain unclear.

View Article and Find Full Text PDF

Introduction: Osimertinib is the first-line treatment for patients with non-small cell lung cancer (NSCLC) who have EGFR mutations and favorable performance status (PS). Despite increasing clinical data on osimertinib, evidence in patients with an impaired PS remains limited. Therefore, a multicenter phase II trial (OPEN/TORG2040) was conducted to evaluate the efficacy and safety of first-line osimertinib for patients with EGFR mutation-positive NSCLC and poor PS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!