The exploration of electroactive labelling with tailorable and strong differential pulse voltammetry (DPV) responses is of great importance in accurate and sensitive screening of a panel of biomarkers related to cancer. Herein, shell-encoded gold nanoparticles (Au NPs) are fabricated and give rise to shell species-dominated DPV peak potentials. Two independent DPV peaks appear at -0.08V for Au@CuO core-shell NPs and 0.26V for Au@Ag core-shell NPs. Shell-encoded Au NPs drastically exhibit shell thickness-tunable amplified peak currents. The non-interfering and amplified DPV responses enable shell-encoded Au NPs to be an alternative electrochemical signal amplifier for dual screening of carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP). The limits of detection (LODs) are calculated to be 1.8pg/mL for CEA and 0.3pg/mL for AFP. In comparison to the parallel single-analyte assays, shell-encoded Au NPs engineered electrochemical aptasensors offer multiplexing capability and show significant prospects in biomedical research and early diagnosis of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2017.07.061DOI Listing

Publication Analysis

Top Keywords

shell-encoded nps
12
dpv responses
8
core-shell nps
8
nps
6
shell-encoded
5
shell-encoded nanoparticles
4
nanoparticles tunable
4
tunable electroactivity
4
electroactivity specific
4
specific dual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!