Background: Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease involving intracellular activation of digestive enzymes and pancreatic acinar cell injury. The present study was performed to investigate whether methane-rich saline (MS) was involved in the regulation of AP.
Methods: MS (16ml/kg) was administered at different dosing frequencies on mice with cerulein-induced AP. Serum amylase, lipase and histopathological changes in the pancreas tissue were measured. Serum cytokine TNFα, IL-6, IFNγ and IL-10 were detected by ELISA. The mRNA levels of these inflammatory cytokines in the pancreas were detected by real time-PCR. Myeloperoxidase (MPO) and superoxide dismutase (SOD) were determined using commercial kits. Apoptosis was assessed by immunohistochemistry and Western blot.
Results: MS treatment reversed the increased serum level of amylase and lipase, alleviated the pathological damage in the pancreas, and decreased the expression of TNFα, IL-6, IFNγ and IL-10 in cerulean-induced AP mice. In addition, MPO was down-regulated and SOD was up-regulated in the MS treated pancreas, indicating that MS had an anti-oxidant effect against AP. Furthermore, MS protected pancreatic cells against cerulean-induced apoptosis and abolished cleaved caspase-3.
Conclusion: MS exerted anti-inflammatory, anti-oxidant and anti-apoptotic effects on cerulein-induced AP in mice and may proved to be a promising therapeutic agent for the clinical treatment of pancreatitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2017.07.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!