Accumulated data indicate a significant role of T cell dysfunction in the pathogenesis of chronic lymphocytic leukemia. In CLL, regulatory T cells are significantly higher and show lower apoptotic levels compared to healthy donors. We demonstrate that CLL derived CD4CD25CD127 and CD4CD25CD127 subpopulations share a common immunophenotypic profile with conventional Tregs and are associated with advanced stage disease. We further provide evidence that the increased number of Tregs contributes indirectly to the proliferation of the CLL clone, by suppressing the proliferation of Teffs which in turn suppress CLL cells. These data are further supported by our observations that CLL derived Tregs appear rather incapable of inducing apoptosis of both normal B cells and CLL cells, in contrast to normal Tregs, suggesting an immunoediting effect of CLL cells on Tregs which negatively affects the functionality of the latter and contributes to the failure of Tregs in CLL to efficiently eliminate the abnormal clone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2017.07.004 | DOI Listing |
Sci Rep
January 2025
Department of Clinical and Chemical Pathology, Ain shams University, Cairo, Egypt.
The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Clinical Institute of Laboratory Diagnostics, University Hospital Centre Osijek, J. Huttlera 4, Osijek 31 000, Croatia; Faculty of Medicine Osijek, JJ Strossmayer University of Osijek, J. Huttlera 4, Osijek 31 000, Croatia. Electronic address:
Ibrutinib and acalabrutinib, Bruton's tyrosine kinase inhibitors (BTKi) used for chronic lymphocytic leukemia (CLL) treatment, aim the same target but their off-target effects are different. The aim of this study was to use single-cell MALDI TOF mass spectrometry imaging to compare the CD19+ lymphocytes' mass spectra in untreated and ibrutinib- or acalabrutinib-treated subjects in order to better understand the therapeutic effect of BTKi. 180 cells from 9 male subjects divided in 3 groups (untreated, ibrutinib-treated and acalabrutinib-treated) were analyzed using MALDI-TOF mass spectrometry analyzer.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France.
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5/CD19 B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
Adoptive cell therapy (ACT) utilizing tumor-infiltrating lymphocytes (TILs) has emerged as a successful treatment modality for various malignancies. However, TILs cultured from colorectal cancer (CRC) liver metastasis remain underexplored. Fifteen CRC liver metastasis tissues underwent initial expansion (IE) of TILs and rapid expansion (REP).
View Article and Find Full Text PDFGenome Res
January 2025
The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Amsterdam UMC, Cancer Center Amsterdam
Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrated high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!