Efavirenz loaded nanostructured lipid carrier engineered for brain targeting through intranasal route: In-vivo pharmacokinetic and toxicity study.

Biomed Pharmacother

Bharati Vidyapeeth University, Poona College of Pharmacy, Department of Pharmaceutics, Erandwane, Pune 411038, Maharashtra, India.

Published: October 2017

Intranasal delivery is a potential platform that can be employed in targeting the antiretrovirals (ARVs) to reach HIV that harbors in the central nervous system. The objective of the study was to develop an optimized efavirenz (EFV) loaded nanostructured lipid carrier (ENLC) and deliver it through intranasal route for brain targeting. Factorial design (2) was used to identify the key formulation variables influencing particle size and percent drug encapsulation of efavirenz in the NLC. Optimised ENLC-6 batch exhibited a spherical morphology with a mean particle size of 162nm, high drug encapsulation of 95.78±0.42% and in-vitro drug release of 92.45% at the end of 24h. Single dose in-vivo pharmacokinetic studies revealed significant therapeutic concentration of the drug in the CNS following IN administration with a C value of 31.45±0.75 and T of 11.14h. A 10 fold increase (p<0.001) in% drug targeting efficiency (DTE) and 4.5 fold increase (p<0.001) in % drug targeting potential (DTP) for ENLC-6 was observed as compared to pure EFV. Sub-acute 28day IN toxicity in experimental animals indicated non-toxicity of encapsulated efavirenz over pure drug. Based on the findings we conclude that the intelligent choice of the lipdic carrier along with the strategic use of excipients can prove helpful for the efficient brain targeting of the encapsulated efavirenz which is devoid of toxicity. This may prove useful in the management of neuro-AIDS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2017.07.067DOI Listing

Publication Analysis

Top Keywords

loaded nanostructured
8
nanostructured lipid
8
lipid carrier
8
brain targeting
8
intranasal route
8
in-vivo pharmacokinetic
8
particle size
8
drug encapsulation
8
efavirenz loaded
4
carrier engineered
4

Similar Publications

This study reports a green, multi-component synthesis of 2-aminoimidazole-linked quinoxaline Schiff bases using a novel superparamagnetic acid catalyst. The catalyst consists of sulfo-anthranilic acid (SAA) immobilized on MnCoFeO@alginate magnetic nanorods (MNRs), achieving high SAA loading (1.8 mmol g) and product yields (91-97%).

View Article and Find Full Text PDF

Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.

View Article and Find Full Text PDF

Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.

Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.

View Article and Find Full Text PDF

A dual-mode colorimetric/photothermal lateral flow biosensor based on Au/TiCT for HIV-DNA detection.

Anal Chim Acta

February 2025

Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, PR China. Electronic address:

Background: Traditional lateral flow biosensors (LFBs), which utilize colorimetric signals as output, possess the virtues of simplicity and rapidity. However, it also suffers from insufficient sensitivity and limited reliability. It is well known that the results of LFBs can be false positive, and it is difficult to perform accurate quantification under low-abundance targets.

View Article and Find Full Text PDF

Applying hollow octahedron PtNPs/Pd-CuO nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection.

Anal Chim Acta

February 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.

Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!