Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent neural ensemble recordings have established a link between goal-directed spatial decision making and internally generated neural sequences in the hippocampus of rats. To elucidate the synaptic mechanisms of these sequences underlying spatial decision making processes, we develop and investigate a spiking neural circuit model endowed with a combination of two synaptic plasticity mechanisms including spike-timing dependent plasticity (STDP) and synaptic scaling. In this model, the interplay of the combined synaptic plasticity mechanisms and network dynamics gives rise to neural sequences which propagate ahead of the animals' decision point to reach goal locations. The dynamical properties of these forward-sweeping sequences and the rates of correct binary choices executed by these sequences are quantitatively consistent with experimental observations; this consistency, however, is lost in our model when only one of STDP or synaptic scaling is included. We further demonstrate that such sequence-based decision making in our network model can adaptively respond to time-varying and probabilistic associations of cues and goal locations, and that our model performs as well as an optimal Kalman filter model. Our results thus suggest that the combination of plasticity phenomena on different timescales provides a candidate mechanism for forming internally generated neural sequences and for implementing adaptive spatial decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552356 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1005669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!