Protease-activated receptors (PARs) are G protein-coupled receptors, which are activated by proteolytical cleavage of the amino-terminus and act as sensors for extracellular proteases. We hypothesized that PAR-1 and PAR-2 can be modulated by inflammatory stimulus in human dental pulp cells. PAR-1 and PAR-2 gene expression in human pulp tissue and MDPC-23 cells were analyzed by quantitative polymerase chain reaction. Monoclonal PAR-1 and PAR-2 antibodies were used to investigate the cellular expression of these receptors using Western blot, flow cytometry, and confocal microscopy in MDPC-23 cells. Immunofluorescence assays of human intact and carious teeth were performed to assess the presence of PAR-1 and PAR-2 in the dentin-pulp complex. The results show for the first time that human odontoblasts and MDPC-23 cells constitutively express PAR-1 and PAR-2. PAR-2 activation increased significantly the messenger RNA expression of matrix metalloproteinase (MMP)-2, MMP-9, MMP-13, and MMP-14 in MDPC-23 cells ( P < 0.05), while the expression of these enzymes decreased significantly in the PAR-1 agonist group ( P < 0.05). The high-performance liquid chromatography and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry analysis showed the presence of MMP-13 activity cleaving PAR-1 at specific, noncanonical site TLDPRS↓FLL in human dental pulp tissues. Also, we detected a presence of a trypsin-like activity cleaving PAR-2 at canonical site SKGR↓SLIGRL in pulp tissues. Confocal microscopy analysis of human dentin-pulp complex showed intense positive staining of PAR-1 and PAR-2 in the odontoblast processes in dentinal tubules of carious teeth compared to intact ones. The present results support the hypothesis of activation of the upregulated PAR-1 and PAR-2 by endogenous proteases abundant during the inflammatory response in dentin-pulp complex.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0022034517719415DOI Listing

Publication Analysis

Top Keywords

par-1 par-2
32
mdpc-23 cells
16
dentin-pulp complex
12
par-1
10
par-2
9
human dental
8
dental pulp
8
confocal microscopy
8
carious teeth
8
activity cleaving
8

Similar Publications

Gastrodin attenuates diabetic cardiomyopathy characterized by myocardial fibrosis by inhibiting the KLK8-PAR1 signaling axis.

Chin Med

November 2024

The State Key Laboratory of Functions and Applications of Medicinal Plants, The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education), Guizhou Medical University, No.6 Ankang Avenue, Guian New District, Guiyang, 561113, Guizhou, China.

Background: Diabetic cardiomyopathy (DCM), characterized by myocardial fibrosis, is a major cause of mortality and morbidity in diabetic patients; the inhibition of cardiac fibrosis is a fundamental strategy for treating DCM. Gastrodin (GAS), a compound extracted from Gastrodia elata protects against DCM, but the molecular mechanism underlying its antifibrotic effect has not been elucidated.

Methods: In vivo, the effects of GAS were investigated using C57BL/6 mice with DCM, which was induced by administering a high-sugar, high-fat (HSF) diet and streptozotocin (STZ).

View Article and Find Full Text PDF

Aim: Molecular alterations of diabetic gastroenteropathy are poorly identified. This study investigates the effects of prolonged GABA supplementation on key protein expression levels of trypsin-1, PAR-1, PAR-2, PAR-3, PI3K, Akt, COX-2, GABAA, and GABAB receptors in the gastric tissue of type 2 diabetic rats (T2DM).

Method: To induce T2DM, a 3-month high-fat diet and 35 mg/kg of streptozotocin was used.

View Article and Find Full Text PDF

Background And Purpose: Chymotrypsin is a pancreatic protease secreted into the lumen of the small intestine to digest food proteins. We hypothesized that chymotrypsin activity may be found close to epithelial cells and that chymotrypsin signals to them via protease-activated receptors (PARs). We deciphered molecular pharmacological mechanisms and gene expression regulation for chymotrypsin signalling in intestinal epithelial cells.

View Article and Find Full Text PDF

Proteinase-activated Receptor 2: Springboard of Tumors.

Anticancer Res

January 2024

Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Prague, Czech Republic.

Proteinase-activated receptors (PARs) were discovered more than 25 years ago and since then, their role in cancer has been under investigation. Research has primarily focused on the receptors located on the membrane of cancer cells and their impact on metabolism, intracellular signalling, and proliferation. Regarding the host response to cancer, studies have predominantly examined the relationship of thrombin receptors (PAR-1, PAR-3, and PAR-4) with blood clotting in distant metastatic spread.

View Article and Find Full Text PDF

Coagulation Factor Xa Has No Effects on the Expression of PAR1, PAR2, and PAR4 and No Proinflammatory Effects on HL-1 Cells.

Cells

December 2023

Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.

Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!