Copper plays a dual role as a nutrient and a toxin during bacterial infections. While uropathogenic Escherichia coli (UPEC) strains can use the copper-binding metallophore yersiniabactin (Ybt) to resist copper toxicity, Ybt also converts bioavailable copper to Cu(II)-Ybt in low-copper conditions. Although E. coli have long been considered to lack a copper import pathway, we observed Ybt-mediated copper import in UPEC using canonical Fe(III)-Ybt transport proteins. UPEC removed copper from Cu(II)-Ybt with subsequent re-export of metal-free Ybt to the extracellular space. Copper released through this process became available to an E. coli cuproenzyme (the amine oxidase TynA), linking this import pathway to a nutrient acquisition function. Ybt-expressing E. coli thus engage in nutritional passivation, a strategy of minimizing a metal ion's toxicity while preserving its nutritional availability. Copper acquisition through this process may contribute to the marked virulence defect of Ybt-transport-deficient UPEC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5562518PMC
http://dx.doi.org/10.1038/nchembio.2441DOI Listing

Publication Analysis

Top Keywords

copper import
12
copper
9
escherichia coli
8
copper cuii-ybt
8
import pathway
8
coli
5
import escherichia
4
coli yersiniabactin
4
yersiniabactin metallophore
4
metallophore system
4

Similar Publications

Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron HO signalling cascade in Drosophila that is essential for long-term memory formation.

View Article and Find Full Text PDF

Europe's extra-territorial mineral trade and clean energy metamorphosis in a landscape of multifaceted risks.

J Environ Manage

January 2025

Graduate School of Economics and Management, Ural Federal University, Yekaterinburg, Russia; Bangladesh Institute of Governance and Management, University of Dhaka (Affiliated), Bangladesh. Electronic address:

Despite modest reserves of energy transition minerals (ETMs) like copper, nickel, and aluminium, European nations largely depend on imports, a dynamic often marred by financial uncertainties, price volatility, and geopolitical tensions. The purpose of this study is to investigate the response of extra-territorial ETM imports to the clean energy objectives of 24 European nations, taking into account financial stress, mineral price volatility, and geopolitical instability. We analyse monthly data from January 2005 to October 2022, using the quantiles via moments (QvM) and the linear models multiway fixed effects (LMFE) approaches to account for heterogeneity, spatial dependence, heteroscedasticity, and endogeneity in the data.

View Article and Find Full Text PDF

Metallothionein rescues doxorubicin cardiomyopathy via mitigation of cuproptosis.

Life Sci

January 2025

Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:

Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.

View Article and Find Full Text PDF

Unlabelled: The ability to sense, import but also detoxify copper (Cu) has been shown to be crucial for microbial pathogens to survive within the host. Previous studies conducted with the opportunistic human fungal pathogen ( ) have revealed two extreme Cu environments encountered during infection: A high Cu environment within the lung and a low Cu environment within the brain. However, how senses these different host Cu microenvironments, and the consequences of a blunted Cu stress adaption for pathogenesis, are not well understood.

View Article and Find Full Text PDF

Solving the puzzle of copper trafficking in Trypanosoma cruzi: candidate genes that can balance uptake and toxicity.

FEBS J

January 2025

Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Rosario (UNR), Rosario, Argentina.

Article Synopsis
  • Trypanosoma cruzi, the parasite causing Chagas disease, relies on copper (Cu) for growth and development, but its levels must be carefully controlled due to potential toxicity.
  • The study found that Cu is crucial for the proliferation of the epimastigote stage and the transition to the metacyclic form, but the intracellular amastigote stage experiences copper stress during infection.
  • Researchers identified key gene products related to copper metabolism, such as TcCuATPase for copper export and suggested TcIT as a possible copper importer, highlighting a unique model of copper transport and distribution in T. cruzi.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!